大数据时代的小数据阅读|推荐两本关于大数据时代的书谢谢

⑴ 大数据时代,别忽视了小数据

大数据时代,别忽视了小数据

大数据时代,人人都在谈论大数据。从概念认知到场景应用,人们似乎正试图掀起一股数据狂潮,这其中就包括了大家熟知的智慧城市、防止犯罪,以及类似于Google对流感趋势的预测等等。诸如此类的大数据应用有些已经在发挥其应有的作用,但更多的只是一个梦想。在这些成功的和将要成功的案例背后,到底什么才是大数据的本质呢?

随着过去20年中数据挖掘和人工智能的发展,预测技术在2011年已经相对成熟,甚至走向广泛的应用,而大数据这个概念才刚刚提出。在过去的三到五年中,基于大数据的案例比比皆是,其结果却喜忧参半。这些失败的大数据项目背后是对大数据这一概念过高的预期,反而让大家忽视了对问题场景的重视。除此之外,关联数据往往也是缺失的,尽管说大数据到处都有,但是,真正对你有价值、对决策有意义的数据往往并不容易得到,而我们所知的绝大多数数据都是噪音多过价值。

大数据作为一个技术为我们提供了许多人与人之间交互的数据和信息,但是真正的大数据并不是一些排名和信息的发布,而是从数据中理性找出内在的逻辑关系,并将这些逻辑关系应用于实践。如果不找到事物发展的规律而永远“闻数据起舞”的话,我们的决策往往会与期望相距甚远。Google曾通过用户搜索与感冒相关的关键词来预测流感趋势,这一基于相关关系进行的趋势预测一直到2012年前都应用得非常完美。但是到了2012年的圣诞节,Google的预测比真实数值高出了整整一倍。

是什么原因导致了Google的预测失误?2013年的《科学》上面有一篇文章,几位教授对这个现象进行了分析,他们的归纳是大数据有这样一些天生的弱点:首当其冲的就是“骄傲的大数据”——认为大数据什么都能做,小数据没有用。事实上,大数据的采集远远不如小数据那样“干净”。同时,所有大数据的应用都离不开算法——“唯一不变的就是永远在变化的算法”。更重要的是,在Google的案例中,人的行为本身也会随着大数据及其技术的发展而改变,仅仅基于数据之间的相关关系,而忽视内在的逻辑关系,对预测来讲是远远不够的。当意识到预测中存在这样的问题,就需要人们用大数据去获得规律,用小数据去匹配场景,从而实现精准的预测和智能的决策。无论是企业还是个人,先要存积并了解透彻硕大的大数据表格中属于你的那行数据,唯有如此,我们才有可能从一滴水里看世界。

《大数据时代》作者认为:“由大数据带来对人的重新认识,不是在阿波罗神庙,而是在小世界网络中,认识你自己。”我们从昨天的数据作用中认识自然、认识宇宙到今天通过大数据更多地认识网络和社会,我们的认识更加全面、更加深刻、也更加广泛。但是成就大数据的是无数努力造就小数据的人,他们探索大数据技术,认知大数据文化,并怀揣着对数据的敬畏和对规律的尊重。

以上是小编为大家分享的关于大数据时代,别忽视了小数据的相关内容,更多信息可以关注环球青藤分享更多干货

⑵ 推荐两本关于大数据时代的书,谢谢。

市面上如今关于大数据的书,近20种。挑出这三本,是有理由的。不仅单本比较靠内谱,讲述得有意思容,而且串联起来,竟然有逻辑联系,有互补,好像商量好了似的首先看巴拉巴西的《爆发》,在一个历史故事的连续讲述中,了解大数据的概念实质;接着看舍恩伯格的《大数据时代》,明白大数据理念和生活工作及思维变革的关系;最后翻翻涂子沛的《大数据》,看美国政府在大数据开放上的进程与反复,算是个案。如果能够基本了解这三本的观点,出门有底气,见人腰杆直,不再被忽悠。

⑶ 3000字概括《大数据时代》

有言在先近期有些起伏,这种情况最适合回归书本,寻找一些你内心认同的东西。这几天花了点时间重温《大数据时代》,整理、总结出了精华的东西,分享给大家。大数据引起了变革当今社会所独有的一种新型能力:以一种前所未有的方式,通过对海量数据进行分析,获得巨大价值的产品和服务,或深刻的洞见。? 震人心魄的数据2003年,人类第一次破译人体基因密码的时候,辛苦工作10年才完成了三十亿对碱基对的排序;大约10年后,世界范围内的基因仪每15分钟就可以完成同样的工作。在金融领域,美国股市每天的成交量高达70亿股,而其中三分之二的交易都是邮件里在数学模型和算法之上的计算机程序自动完成的。在2007年,所有数据中只有7%是存储在报纸、书籍、图片等媒介上的模拟数据,其余全部是数字数据;在2000年时,数字存储信息仍只占全球数据量的四分之一;当时,另外四分之三的信息都存储在报纸、胶片、黑胶唱片和盒式磁带这类媒介上。? 大数据的精髓大数据带给我们的三个颠覆性观念转变:是全部数据,而不是随机采样;是大体方向,而不是精确制导;是相关关系,而不是因果关系。A.不是随机样本,而是全体数据:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(随机采样,以前我们通常把这看成是理所应当的限制,但高性能的数字技术让我们意识到,这其实是一种人为限制);B.不是精确性,而是混杂性:研究数据如此之多,以至于我们不再热衷于追求精确度;之前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着规模的扩大,对精确度的痴迷将减弱;拥有了大数据,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向即可,适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力;C.不是因果关系,而是相关关系:我们不再热衷于找因果关系,寻找因果关系是人类长久以来的习惯,在大数据时代,我们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系;相关关系也许不能准确地告诉我们某件事情为何会发生,但是它会提醒我们这件事情正在发生。? 大数据的核心是预测大数据的核心就是预测,它通常被视为人工智能的一部分,或者更确切地说,被视为一种机器学习。大数据不是要教机器人像人一样思考,而是把数学算法运用到海量的数据上来预测事情发生的可能性。●●●不是随机样本,而是全体数据 历史上,因为记录、储存、分析数据的工具都不够好,为了让分析变得简单,我们选择了把数据量减少,统计学的一个目的就是用尽可能少的数据来证实尽可能重大的发现。? 传统抽样的精确性采样分析的精确性随着采样随机性的增加而大幅提高,但与样本数量的增加关系不大,大致原因是当样本数量达到某个值后,我们从新个体身上得到的信息会越来越少,这与经济学中的边际效应类似。? 随机采样的问题随机采样有一个很大的问题:人们只能从随机采样中得出事先设计好的问题的结果,调查得出的数据不可以重新分析以实现计划之外的目的,而且一旦采样过程中存在任何偏见,分析结果就会相去甚远。? 样本=总体采样的目的就是用最少的数据得到最多的信息,当我们可以获得海量数据的时候,它就没有什么意义了;生活中真正有趣的事情经常藏匿在细节之中,而采样分析却无法捕捉到这些细节(因为采样不能得到计划之外的东西);大数据建立在掌握所有数据,至少是尽可能多的数据的基础上,所以我们就可以正确地考察细节并进行新的分析。●●●不是精确性,而是混杂性执迷于精确性是信息缺乏时代和模拟时代的产物,只有5%的数据是结构化且能适用于传统数据库的,如果不能接受混乱,剩下的95%的非结构化数据都无法被利用。? 小数据时代的精确性在“小数据时代”,人们收集、处理数据的能力有限,对“小数据”而言,最基本、最重要的要求就是减少错误,保证质量(收集信息的有限意味着细微错误会被放大,甚至有可能影响整个结果的准确性)。人们创造了很多精确的系统,这些系统试图让我们接受一个世界困乏而规整的惨象——假装世间万物都是整齐地排列的;事实上现实是纷繁复杂的,天地间存在的事物也远远多于系统所设想的。? 我们要的是概率我们总是为了一个“答案”而活着,精确性似乎一直是我们生活的支撑,但认为每个问题只有一个答案的想法是站不住脚的。“一个唯一的真理“的存在是不可能的,而且追求这个唯一的真理是对注意力的分散。大数据也许是拯救我们的关键方法:大数据通常用概率说话,而不是板着“准确无疑”的面孔。●●●不是因果关系,而是相关关系在大数据时代,我们不必知道现象背后的原因,而是要让数据自己“发声”。我们不再一味追求人们为什么这么做,知道人们为什么这么做可能是有用的,但这个问题目前并不是很重要,重要的是我们能通过大数据分析出人们的相关行为。? 相关关系相关关系的核心是量化两个数据值之间的数理关系:相关关系强是指当一个数据值增加时,另一个数据值很有可能也会随之增加;相关关系弱就意味着当一个数据值增加时,另一个数据值几乎不会发生变化。相关关系通过识别有用的关联物来帮助我们分析一个现象,而不是通过揭示其内部的运作机制。相关关系没有绝对,只有可能性。? 人们的直接目的就是寻找因果关系人们的直接愿望就是了解因果关系,我们已经习惯了信息的匮乏,故此亦习惯了在少量数据的基础上进行推理思考。以前我们用实验来证明因果关系,它是通过是否有诱因来分别观察所产生的结果是不是和真实情况相符。但是,凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果,而这个结果又是由其他原因导致的,以此循环往复,那么就不存在人的自由意志这一说了——所有的生命轨迹都只是受到因果关系的控制了——这显然是不正确的。? 相关关系和因果关系并不矛盾相关关系分析本身意义重大,同时它也为研究因果关系奠定了基础,通过找出可能相关的事物,我们可以在此基础上进行进一步的因果关系分析,如果存在因果关系的话,我们再进一步找出原因。在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道“是什么”时,我们就会继续向更深层次研究因果关系,找出背后的“为什么”。在小数据时代,我们会假象世界是怎么运作的,然后通过收集和分析数据来验证这种假象;在大数据时代,我们会在数据的指导下探索世界,不再受限于各种假想;我们的研究始于数据,也因为数据我们发现了以前不曾发现的联系。A.大量的数据意味着“理论的终结”:用一系列的因果关系来验证各种猜测的传统研究范式已经不实用了,如今它已经被无需理论指导的相关关系研究所取代;B.现在已经是一个有海量数据的时代,应用数学已经取代了其他的所有学科工具,而且只要数据足够,就能说明问题,如果你有一拍字节的数据,只要掌握了这些数据之间的相关关系,一切就迎刃而解了;C.“理论的终结”:所有的普遍规则都不重要了,重要的是数据分析,它可以揭示一切问题;但大数据并不意味着理论已死,因为大数据就是在理论的基础上形成的。●●●大数据时代的商业变革在一个可能性和相关性占主导地位的世界里,专业性变得不那么重要了;行业并不会消失,但是他们必须与数据表达的信息进行博弈。? 数据化:一切皆可量化大数据的核心发展动力来源于人类测量、记录和分析世界的渴望。为了得到可量化的信息,我们要知道如何计量;为了数据化量化了的信息,我们要知道怎么记录计量的结果。如今我们经常把“数字化”和“数据化”这两个概念搞混,但是对这两个概念的区分实际上非常重要:A.数据化:一种把现象转变为可制表分析的量化形式的过程;B.数字化:把模拟数据转换成0和1表示的二进制码;数字化带来了数据化,但是数字化无法取代数据化;数字化是把模拟数据变成计算机课读的数据,和数据化有着本质的不同。? 当方位变成了数据1978年见证了一个伟大的转变,当时构成全球定位系统(GPS)的24颗卫星第一次发射成功,通过与技术手段的融合,全球定位系统能够快速、相对低价地进行地理定位,而且不需要任何专业知识。地理位置信息汇集起来,可能会揭示事情的发展趋势;位置信息一旦被数据化,新的用途就犹如雨后春笋般涌现出来,而新价值也会随之不断催生。? 当沟通变成数据社交网络平台不仅给我们提供了寻找和维持朋友、同事关系的场所,也将我们日常生活的无形元素提取出来,再转化为可作新用途的数据。数据化不仅能将态度和情绪转变为一种可分析的形式,也可能转化人类的行为,这些行为难以跟踪,特别是在广大的社区和其中的子人群环境中。A.Facebook将关系数据化——社交关系在过去一直被视作信息而存在,但从未被正式界定为数据,直到Facebook“社交图谱”的出现;B.Twitter通过创新,让人们能轻易记录以及分享他们零散的想法,从而使情绪数据化得以实现。? “取之不尽,用之不竭“的数据创新尽管数据长期以来一直是有价值的,但通常只是被视作附属企业经营核心业务的一部分,或者被归入知识产权或个人信息中相对狭窄的类别,但在大数据时代,所有数据都是有价值的。我们的时代,数据收集不再存在固有的局限性,由于存储成本的大幅下降,保存数据比丢弃数据更加容易,这使得以较低成本获得更多数据的可能性比以往任何时候都大。不同于物质性的东西,数据的价值不会随着它的使用而减少,而是可以不断地被处理,信息不会像其他物质产品一样随着使用而有所损耗。数据的价值并不仅限于特定的用途,它可以为了同一目的而被多次使用,也可用于其他目的。 作者 _Glen_ 本文转自简书,转载需授权

⑷ 什么是大数据时代

让大数据区别于数据的,是其海量积累、高增长率和多样性

什么是数据?数据(data)在拉丁文里是“已知”的意思,在英文中的一个解释是“一组事实的集合,从中可以分析出结论”。

笼统地说,凡是用某种载体记录下来的、能反映自然界和人类社会某种信息的,就可称之为数据。

古人“结绳记事”,打了结的绳子就是数据。

步入现代社会,信息的种类和数量越来越丰富,载体也越来越多。

数字是数据,文字是数据,图像、音频、视频等都是数据。

什么是大数据呢?量的增多,是人们对大数据的第一个认识。

随着科技发展,各个领域的数据量都在迅猛增长。有研究发现,近年来,数字数据的数量每3年多就会翻一番。

大数据区别于数据,还在于数据的多样性。

正如高德纳咨询公司研究报告指出的,数据的爆炸是三维的、立体的。所谓的三维,除了指数据量快速增大外,还指数据增长速度的加快,以及数据的多样性,即数据的来源、种类不断增加。

从数据到大数据,不仅是量的积累,更是质的飞跃。海量的、不同来源、不同形式、包含不同信息的数据可以容易地被整合、分析,原本孤立的数据变得互相联通。这使得人们通过数据分析,能发现小数据时代很难发现的新知识,创造新的价值。

通过数据来研究规律、发现规律,贯穿了人类社会发展的始终。

人类科学发展史上的不少进步都和数据采集分析直接相关,例如现代医学流行病学的开端。伦敦1854年发生了大规模的霍乱,很长时间没有办法控制。

一位医师用标点地图的方法研究了当地水井分布和霍乱患者分布之间的关系,发现有一口水井周围,霍乱患病率明显较高,借此找到了霍乱暴发的原因:一口被污染的水井。关闭这口水井之后,霍乱的发病率明显下降。这种方法,充分展示了数据的力量。

本质上说,许多科学活动都是数据挖掘,不是从预先设定好的理论或者原理出发,通过演绎来研究问题,而是从数据本身出发通过归纳来总结规律。

近现代以来,随着我们面临的问题变得越来越复杂,通过演绎的方式来研究问题常常变得很困难。这就使得数据归纳的方法变得越来越重要,数据的重要性也越发凸显出来。

大数据是非竞争性资源,有助于政府科学决策、商家精准营销。

大数据时代,数据的重要作用更加凸显,许多国家都把大数据提升到国家战略的高度。

政府合理利用大数据,引导决策的将是基于实证的事实,政府会更有预见性、更加负责、更加开放。

中国古代治国就已经有重数据的思想,如商鞅提出,“强国知十三数……欲强国,不知国十三数,地虽利,民虽众,国愈弱至削”。

大数据时代,循“数”治国将更加有效。小数据时代,政府做决策更多依凭经验和局部数据,难免头痛医头、脚痛医脚。比如,交通堵塞就多修路。

大数据时代,政府做决策能够从粗放型转向集约型。路堵了,利用大数据分析,可以得知哪一时间、哪一地段最容易堵,或在这一地段附近多修路,或提前预警引导居民合理安排出行,实现对交通流的最佳配置和控制,改善交通。

对于商家来说,大数据使精准营销成为可能。

一个有趣的故事,是沃尔玛超市的“啤酒、尿布”现象。沃尔玛超市分析销售数据时发现,顾客消费单上和尿布一起出现次数最多的商品,竟然是啤酒。

跟踪调查后发现,有不少年轻爸爸会在买尿布时,顺便买些啤酒喝。沃尔玛发现这一规律后,搭配促销啤酒、尿布,销量大幅增加。

大数据时代,每个人都会“自发地”提供数据。我们的各种行为,如点击网页、使用手机、刷卡消费、观看电视、坐地铁出行、驾驶汽车,都会生成数据并被记录下来,我们的性别、职业、喜好、消费能力等信息,都会被商家从中挖掘出来,以分析商机。

大数据也将使个人受益。

从生物学、医学上讲,以前生物学家只是通过对单个或几个基因的操控来观察其对生物体的影响,很难发现整体的关联。现在由于技术的发展,可以分析很多,如遗传信息、全体基因的表达量信息、蛋白质族谱信息、全基因组甲基化信息、表观遗传信息等。

同时还有个人健康指标、病历、药物反应等数据。如果真能达成生物学上多维多向数据的有机融合,就能够把个人完整地描述出来,从而实现精准医疗的目的。

大数据时代,审核数据的真实性也有了更有效的手段。

大数据的特征之一是多样性,不同来源、不同维度的数据之间存在一定的关联度,可以交叉验证。例如,某地的工业产值虚报了一倍,但用电量和能耗却没有达到相应的规模。这就是数据异常,很容易被系统识别出来。发现异常后,相关部门再进行复核,就能更有针对性地防止、打击数据造假。

数据是一种资源,但数据又跟煤、石油等物质性资源不一样。物质性资源不可再生,你用多了,别人就用少了,因而很难共享。

数据可以重复使用、不断产生新的价值。大数据资源的使用是非恶性竞争的,共享的前提下,更能够制造双赢。

从另一个角度来说,数据如果不被融合、联系在一起,也不能称之为大数据。

大数据不能被直接拿来使用,统计学依然是数据分析的灵魂

现在社会上有一种流行的说法,认为在大数据时代,“样本=全体”,人们得到的不是抽样数据而是全数据,因而只需要简单地数一数就可以下结论了,复杂的统计学方法可以不再需要了。

首先,大数据告知信息但不解释信息。

打个比方说,大数据是“原油”而不是“汽油”,不能被直接拿来使用。就像股票市场,即使把所有的数据都公布出来,不懂的人依然不知道数据代表的信息。

大数据时代,统计学依然是数据分析的灵魂。正如加州大学伯克利分校迈克尔•乔丹教授指出的,“没有系统的数据科学作为指导的大数据研究,就如同不利用工程科学的知识来建造桥梁,很多桥梁可能会坍塌,并带来严重的后果。”

其次,全数据的概念本身很难经得起推敲。全数据,顾名思义就是全部数据。这在某些特定的场合对于某些特定的问题确实可能实现。

比如,要比较清华、北大两校同学数学能力整体上哪个更强,可以收集到两校同学高考时的数学成绩作为研究的数据对象。

从某种意义上说,这是全数据。但是,并不是说我们有了这个全数据就能很好地回答问题。

一方面,这个数据虽然是全数据,但仍然具有不确定性。

入校时的数学成绩并不一定完全代表学生的数学能力。假如让所有同学重新参加一次高考,几乎每个同学都会有一个新的成绩。分别用这两组全数据去做分析,结论就可能发生变化。

另一方面,事物在不断地发展和变化,同学入校时的成绩并不能够代表现在的能力。全体同学的高考成绩数据,仅对于那次考试而言是全数据。

“全”是有边界的,超出了边界就不再是全知全能了。事物的发展充满了不确定性,而统计学,既研究如何从数据中把信息和规律提取出来,找出最优化的方案;也研究如何把数据当中的不确定性量化出来。

在大数据时代,数据分析的很多根本性问题和小数据时代并没有本质区别。当然,大数据的特点,确实对数据分析提出了全新挑战。

例如,许多传统统计方法应用到大数据上,巨大计算量和存储量往往使其难以承受;对结构复杂、来源多样的数据,如何建立有效的统计学模型也需要新的探索和尝试。对于新时代的数据科学而言,这些挑战也同时意味着巨大的机遇,有可能会产生新的思想、方法和技术。

来源:《人民日报》(2015年07月20日12版)清华大学刘军教授

⑸ 关于大数据时代这本书

<大数据时代>页数 270你的PDF具体全不全,请参照一下目录校验:目录如下:推荐序一 拥抱“大数据时代”宽带资本董事长 田溯宁推荐序二 实实在在大数据中国互联网发展的重要参与者,知名IT 评论人译者序在路上·晃晃悠悠电子科技大学教授,互联网科学中心主任 引言一场生活、工作与思维的大变革大数据开启了一次重大的时代转型。就像望远镜让我们能够感受宇宙,显微镜让我们能够观测微生物一样,大数据正在改变我们的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正蓄势待发……大数据,变革公共卫生大数据,变革商业大数据,变革思维大数据,开启重大的时代转型预测,大数据的核心大数据,大挑战第一部分 大数据时代的思维变革第1章 更多:不是随机样本,而是全体数据当数据处理技术已经发生了翻天覆地的变化时,在大数据时代进行抽样分析就像在汽车时代骑马一样。一切都改变了,我们需要的是所有的数据,“样本= 总体”。让数据“发声”小数据时代的随机采样,最少的数据获得最多的信息全数据模式,样本=总体第2章 更杂:不是精确性,而是混杂性执迷于精确性是信息缺乏时代和模拟时代的产物。只有5% 的数据是有框架且能适用于传统数据库的。如果不接受混乱,剩下95% 的非框架数据都无法被利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户。允许不精确大数据的简单算法比小数据的复杂算法更有效纷繁的数据越多越好混杂性,不是竭力避免,而是标准途径新的数据库设计的诞生第3章 更好:不是因果关系,而是相关关系知道“是什么”就够了,没必要知道“为什么”。在大数据时代,我们不必非得知道现象背后的原因,而是要让数据自己“发声”。关联物,预测的关键“是什么”,而不是“为什么”改变,从操作方式开始大数据,改变人类探索世界的方法第二部分 大数据时代的商业变革第4章 数据化:一切皆可“量化”大数据发展的核心动力来源于人类测量、记录和分析世界的渴望。信息技术变革随处可见,但是如今信息技术变革的重点在“T”(技术)上,而不是在“I”(信息)上。现在,我们是时候把聚关灯打向“I”,开始关注信息本身了。数据,从最不可能的地方提取出来数据化,不是数字化量化一切,数据化的核心当文字变成数据当方位变成数据当沟通成为数据一切事物的数据化第5章 价值:“取之不尽,用之不竭”的数据创新数据就像一个神奇的钻石矿,当它的首要价值被发掘后仍能不断给予。它的真实价值就像漂浮在海洋中的冰山,第一眼只能看到冰山的一角,而绝大部分都隐藏在表面之下。数据创新1:数据的再利用数据创新2:重组数据数据创新3:可扩展数据数据创新4:数据的折旧值数据创新5:数据废气数据创新6:开放数据给数据估值第6章 角色定位:数据、技术与思维的三足鼎立微软以1.1 亿美元的价格购买了大数据公司Farecast,而两年后谷歌则以7 亿美元的价格购买了给Farecast 提供数据的ITA Software 公司。如今,我们正处在大数据时代的早期,思维和技术是最有价值的,但是最终大部分的价值还是必须从数据本身来挖掘。大数据价值链的3大构成大数据掌控公司大数据技术公司大数据思维公司和个人全新的数据中间商专家的消亡与数据科学家的崛起大数据,决定企业的竞争力第三部分 大数据时代的管理变革第7章 风险:让数据主宰一切的隐忧我们时刻都暴露在“第三只眼”之下:亚马逊监视着我们的购物习惯,谷歌着监视我们的网页浏览习惯,而微博似乎什么都知道,不仅窃听到了我们心中的“TA”,还有我们的社交关系网。无处不在的“第三只眼”我们的隐私被二次利用了预测与惩罚,不是因为所做,而是因为“将做”数据独裁挣脱大数据的困境第8章 掌控:责任与自由并举的信息管理当世界开始迈向大数据时代时,社会也将经历类似的地壳运动。在改变人类基本的生活与思考方式的同时,大数据早已在推动人类信息管理准则的重新定位。然而,不同于印刷革命,我们没有几个世纪的时间去适应,我们也许只有几年时间。管理变革1:个人隐私保护,从个人许可到让数据使用者承担责任管理变革2:个人动因VS预测分析管理变革3:击碎黑盒子,大数据程序员的崛起管理变革4:反数据垄断大亨结语 正在发生的未来大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

⑹ 大数据时代下如何利用小数据创造大价值

“所谓‘小数据来’,并不是因为源数据量小,而是通过海量数据分析找出真正能帮助用户做决策的客观依据,让其真正实现商业智能。”日前,在线业务优化产品与服务提供商国双科技揭幕成立“国双数据中心”,该公司高级副总裁续扬向记者表示,数据对企业决策运营越来越重要,大数据时代来临,企业最终需要的数据不是单纯意义上的大数据,而是通过海量数据挖掘用户特征获取的有价值的“小数据”,进而使企业获取有价值的用户信息,科学地分析用户行为,帮助企业明确品牌定位、优化营销策略。“小数据”是价值所在“如今数据呈爆发式增长,已进入数据‘狂潮’时代,过去3年的数据量超过此前400年的数据总量。但是,高容量的数据要能够具体应用在各个行业才能算是有价值。”国双科技首席执行官祁国晟认为,大数据具有高容量、多元化、持续性和高价值4个显著特征。目前,各行各业的数据量正在迅速增长,使用传统的数据库工具已经无法处理这些数据。在硬件发展有限的条件下,通过软件技术的提升来处理不断增长的数据量,对数据利用率的提升以及各行业的发展起着重要的推动作用。

⑺ 大数据时代聊聊小数据阅读答案什么是小数据

小的数据其实是一些抄更袭基础的东西,比如了解你的客户最终倾向,会购买什么样的产品,或者在你的销售中是否存在更高效、高能的模式。一些现存的小数据可以利用,比如网站的网络统计信息—它会告诉你,你的网站在什么时间段流览的人数最多,又有哪个页面被浏览的次数最多,因为哪几个关键词,而被搜索到。这些数据很容易让一家公司推测出哪些因素影响着网站的推广,然后根据这些数据制订更有针对性的传播内容。(摘自:中国客户关系网)

⑻ 大数据时代不得不提的阅读经典阅读本文作者所表达的主要观点是什么

《大数据时代》这本书。它被包括宽带资本董事长田朔宁、知名IT评论人谢文等专业读者鉴定为“大数据领域最好的著作没有之一,一本顶一万本”。有这么好吗?看完自己评价吧。这本书对这个大规模产生、分享和应用数据的新的大时代进行了阐述和厘清,作者围绕“要全体不要抽样、要效率不要绝对精确、要相关不要因果”三大理念,通过数十个商业和学术案例,剖析了万事万物数据化和数据复用挖掘的巨大价值。如作者所言“大数据开启了一次重大时代转型。就像望远镜让我们能够感受宇宙,显微镜让我们看清微生物一样,大数据要改变的是,我们的生活方方面面以及理解世界的方式”。比如,谷歌通过全球搜索分析,比国际疾病控防中心更早更准地预测了流感爆发。在思维变革部分,作者讲述的重点是:样本=总体,我们需要对全部数据的占有和分析;因此,数据缺乏时代的精确性不必执迷,接受混杂基于大数据的简单算法比小数据的复杂算法更有效;样本推断的因果关系不重要了,知道“是什么”的相关关系,或者结果就可以了。如果说上一本《爆发》是通过讲故事阐述一个核心观点的话,这一本倒是不遗余力、不计巨细就大数据的方方面面进行系统分析和介绍,而且案例非常精彩非常时新。所以,个人觉得,就实务而言,这本的裨益确实比较大。

⑼ 在大数据时代,法智金集团发起了一个小数据生态建设伙伴计划,什么是小数据

小数据,顾名思义是相对于大数据而言的,指与我们个人家庭相关的数据信专息,正是无数的小属数据经过汇集处理才形成了今天的大数据。其实法智金集团就是个人家庭数据管理的专业企业,旗下微积分平台更是专业的个人家庭数据智能服务平台,已经在保险、数字政府的领域有实际应用,实现了用户数据资产价值的变现。发起《小数据生态伙伴计划》是为了让更多用户养成良好的数据习惯、营造良好的数据市场环境,帮助企业和个人实现数据资产价值最大化。目前,《小数据生态建设伙伴计划》发起单位包括:法智金集团公司、北京特许经营权交易所有限公司、横琴人寿保险有限公司、中铁海峡建设集团有限公司、福建省区块链协会、熵链科技(福建)有限公司、福州宏东远洋渔业有限公司、浙江塔牌绍兴酒有限公司、中华网(北京华网智讯信息技术有限公司)

赞(0)