大数据技术开设课程|大数据学习需要哪些课程

Ⅰ 大数据专业课程有哪些

首先我们要了解java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。记住学到这里可以作为你学大数据的一个节点。Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

Ⅱ 大数据要学哪些课程

大数据存储阶段:来百源hbase、hive、sqoop。大数度据架构设计阶段:Flume分布式、Zookeeper、Kafka。大数据实时计算阶段:Mahout、Spark、storm。大数据数据采集阶段:Python、Scala。大数据商业实战阶内段:实操企业大数据处理业务场景,分析需求、解决方案实施,技术实战应用。

Ⅲ 大数据专业的课程有哪些

大数据专业主要课程多种多样,属于交叉学科。包括基础课程、必修课和选修课。基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

Ⅳ 大数据专业主要学什么

大数据专业是近年来新兴起的一个学科,也是目前就业前景非常好的专业。那么大数据专业主要课程都有什么呢?下面小编为大家详细盘点一下相关信息,供大家参考。

1大数据专业学习课程都有哪些

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。

此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

以中国人民大学为例:

基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。

必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。

选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

2大数据专业就业方向

1.数据工程方向

毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的Java大数据分布式程序开发、大数据集成平台的应用、开发等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类Java大数据分布式开发、基于大数据平台的程序开发、数据可视化等相关工作,也可在IT领域从事计算机应用工作。

2.数据分析方向

毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的大数据平台运维、流计算核心技术等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类大数据平台运维、大数据分析、大数据挖掘等相关工作,也可在IT领域从事计算机应用工作。

Ⅳ 大数据技术专业学什么

大数据技术专业学:

Linux系统、Java语言、数据结构、大数据导论、数据库基础、Python语言、数据采集&标注、HADOOP运维、Spark数据分析、数据可视化、企业项目综合实践等课程。

培养目标:

本专业旨在培养社会急需的具备大数据处理及分析能力的高级复合型人才。具体包括:掌握计算机科学、大数据科学与信息技术的基本理论、方法和技能,受到系统的科学研究训练,具备一定的大数据科学研究能力与数据工程实施的基本能力,掌握大数据工程项目的规划、应用、管理及决策方法,具有大数据工程项目设计、研发和实施能力的复合型、应用型卓越人才。

Ⅵ 高考大数据专业学习课程有哪些

高考大数据专业学习课程有数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。

Ⅶ 大数据学习需要哪些课程

主修课程抄:面向对象袭程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等

Ⅷ 大数据专业主要学习什么课程

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。2.还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。3.以中国人民大学为例:基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析

Ⅸ 大数据应用技术专业学什么

大数据应用技术专业主要学习的课程有:Linux系统、Java语言、数据结构、大数据导论、数据库基础、Python语言、数据采集&标注、HADOOP运维、Spark数据分析、数据可视化、企业项目综合实践等课程。学生可根据个人兴趣和就业方向选择相关课程,并系统学习。

学生可在云计算企业、大数据应用企业、软件企业、互联网企业和政府机关等企事业单位,胜任大数据运维、数据采集&标注开发、数据挖掘分析开发、数据可视化开发等工作岗位。

(9)大数据技术开设课程扩展阅读:

大数据技术与应用研究方向是将大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术相结合的“互联网+”前沿科技专业。

本专业旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。

Ⅹ 大数据专业主要课程有哪些

大数据专业主要课程多种多样,属于交叉学科。

基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。

必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。

选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

就业前景:

作为人口大国和制造大国,我国数据产生能力巨大,大数据资源极为丰富。随着数字中国建设的推进,各行业的数据资源采集、应用能力不断提升,将会导致更快更多的数据积累。

预计到2021年底,我国数据总量预计将占全球数据总量的21%,将成为名列前茅的数据资源大国和全球数据中心。

赞(0)