『壹』 浅谈大数据时代的IT建设
浅谈大数据时代的IT建设现在已经进入大数据时代,大数据既能促进信息消费,又能带动社会管理创新。当然,大多数企业早已认识到大数据对产业的影响,只是面临着大数据落地的难题。在商业应用层面,维克托·迈尔·舍恩伯格在其所着的《大数据时代》一书中通过大量的实例进行阐释;而在技术层面,互联网巨头有着得天独厚的优势。比如这次的讲解人李彦宏所代表的网络,其搜索技术应用于大数据就是顺理成章的事情。 在互联网和IT行业之外的传统行业也在关注大数据,传统企业希望通过大数据技术指导企业战略,了解产业发展、商业模式、市场竞争中成功的关键要素,进而提高企业核心能力。然而,传统企业不具备互联网企业对数据信息的敏感度,它们产生海量的数据却不能有效利用数据,或者说数据产生、收集、存储都可能是数据链条的末端,有关数据的进程便完全停止。所以,传统企业需要在大数据背景下实现转型。在今天,新技术不断地颠覆传统产业,企业深知“慢一拍”会是什么后果——柯达被数码时代抛弃,诺基亚被智能机时代抛弃,苏宁在电商时代匆忙追赶,电信在互联网时代寻求突破??各行各业的企业都可能在大数据时代掉队,反过来也有机会得以焕发青春。 大数据时代,所有的企业都将由数据驱动,数据将成为企业和公共组织越来越重要的资产。同时,企业更需要高效的大数据工具,让数据资产产生真正的价值。在这个时候,人们首先会朝着互联网企业看过去。互联网产业是信息产业,是数据产业,它们生产、交换、再次加工以及最终呈现到用户面前的“产品”都是数据。因此,在大数据时代,有学者提出“泛互联网化”的思路,以实践收集数据资产、发挥大数据商业价值。这正是广义上的物联网的概念,数据产生、收集、传输、存储、处理都实现互联网化,各行各业都互联网化。 在这个大背景下,企业实现大数据的步骤变得明朗起来。在企业明确自己的大数据项目计划之后,下一步便是实施满足大数据要求的IT建设。 面向云计算的企业IT建设 大数据离不开云计算的支持,云计算是大数据诞生的前提和必要条件。 目前,已经发展成熟的云计算拥有强大的计算、存储能力,可以作为大数据集中采集和存储数据的基础。云计算和大数据的关系可以理解为:云计算为大数据提供了计算能力、存储空间和访问通道,而大数据则是云计算的终极应用。 大数据时代的第一定律是“样本即全体”。随着数据获取、整理、挖掘的成本伴随着摩尔定律不断降低,借助于IT公司提供的数据分析工具,企业将有可能获得产业链上下游的全部数据,从而将企业的市场决策、供应链管控、内部管理的效率提高到前所未有的程度。在IT系统的建设过程中,企业首先面临的最大困难是在内部解决数据的产生、收集以及存储问题。当然,此时的数据也可能不够大,但面临的问题没有本质区别。很明显,能够建设完整大数据IT系统的企业凤毛麟角,大多数企业(特别是传统企业)也没有这个必要,因为大数据对于它们来说是辅助而非核心业务。企业可以选择将部分业务外包出去,再将生成的数据传输回来,但这时又要面临数据的传输问题。总之,大数据IT建设之前,要考虑哪一部分是本地建设,哪一部分置之云端。 模式一旦确定,平台的选择便成为关键,选择哪一种数据分析工具,哪一种数据库,哪一类云服务等等。不同的行业、不同的企业建设大数据IT系统的方案不尽相同,这里不作展开讨论。不过,对大数据IT系统在软硬件方面的一些发展趋势,企业需要重点关注。因为IT技术的发展日新月异,选择一个具有竞争力和强大生命力的平台,企业才能少走弯路,才能真正从投资中获益。 数据仓库特殊性尤为重要 对于大多数企业而言,大数据意味着为长年维护且尘封已久的数据仓库配备一道可访问的大门。 数据仓库过去一直是、未来也将仍然是企业级机构所不可或缺的关键性组成部分。这类系统的作用是将企业方方面面产生的数据汇聚起来,然后分门别类加以划分,最终让这些纷繁复杂的信息成为业务分析师深入了解企业运营状况的宝贵资料。一套针对可扩展性而精心设计出的基础设施正是大数据能否真正发挥作用的关键所在。
『贰』 大数据时代下的三种存储架构
大数据时代下的三种存储架构_数据分析师考试
大数据时代,移动互联、社交网络、数据分析、云服务等应用的迅速普及,对数据中心提出革命性的需求,存储基础架构已经成为IT核心之一。政府、军队军工、科研院所、航空航天、大型商业连锁、医疗、金融、新媒体、广电等各个领域新兴应用层出不穷。数据的价值日益凸显,数据已经成为不可或缺的资产。作为数据载体和驱动力量,存储系统成为大数据基础架构中最为关键的核心。
传统的数据中心无论是在性能、效率,还是在投资收益、安全,已经远远不能满足新兴应用的需求,数据中心业务急需新型大数据处理中心来支撑。除了传统的高可靠、高冗余、绿色节能之外,新型的大数据中心还需具备虚拟化、模块化、弹性扩展、自动化等一系列特征,才能满足具备大数据特征的应用需求。这些史无前例的需求,让存储系统的架构和功能都发生了前所未有的变化。
基于大数据应用需求,“应用定义存储”概念被提出。存储系统作为数据中心最核心的数据基础,不再仅是传统分散的、单一的底层设备。除了要具备高性能、高安全、高可靠等特征之外,还要有虚拟化、并行分布、自动分层、弹性扩展、异构资源整合、全局缓存加速等多方面的特点,才能满足具备大数据特征的业务应用需求。
尤其在云安防概念被热炒的时代,随着高清技术的普及,720P、1080P随处可见,智能和高清的双向需求、动辄500W、800W甚至上千万更高分辨率的摄像机面市,大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
目前市场上的存储架构如下:
(1)基于嵌入式架构的存储系统
节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。
(2)基于X86架构的存储系统
平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。
此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IPSAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FCSAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FCSAN构建相对独立的存储子系统,可以有效解决上述问题。
面对视频监控系统大文件、随机读写的特点,平台SAN架构系统不同存储单元之间的数据共享冗余方面还有待提高;从高性能服务器转发视频数据到存储空间的策略,从系统架构而言也增加了隐患故障点、ISCSI带宽瓶颈导致无法充分利用硬件数据并发性能、接入前端数据较少。上述问题催生了平台NVR架构解决方案。
该方案在系统架构上省去了存储服务器,消除了上文提到的性能瓶颈和单点故障隐患。大幅度提高存储系统的写入和检索速度;同时也彻底消除了传统文件系统由于供电和网络的不稳定带来的文件系统损坏等问题。
平台NVR中存储的数据可同时供多个客户端随时查询,点播,当用户需要查看多个已保存的视频监控数据时,可通过授权的视频监控客户端直接查询并点播相应位置的视频监控数据进行历史图像的查看。由于数据管理服务器具有监控系统所有监控点的录像文件的索引,因此通过平台CMS授权,视频监控客户端可以查询并点播整个监控系统上所有监控点的数据,这个过程对用户而言也是透明的。
(3)基于云技术的存储方案
当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着客观的应用前景。
与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。
一般分为存储层、基础管理层、应用接口层以及访问层。存储层是云存储系统的基础,由存储设备(满足FC协议、iSCSI协议、NAS协议等)构成。基础管理层是云存储系统的核心,其担负着存储设备间协同工作,数据加密,分发以及容灾备份等工作。应用接口层是系统中根据用户需求来开发的部分,根据不同的业务类型,可以开发出不同的应用服务接口。访问层指授权用户通过应用接口来登录、享受云服务。其主要优势在于:硬件冗余、节能环保、系统升级不会影响存储服务、海量并行扩容、强大的负载均衡功能、统一管理、统一向外提供服务,管理效率高,云存储系统从系统架构、文件结构、高速缓存等方面入手,针对监控应用进行了优化设计。数据传输可采用流方式,底层采用突破传统文件系统限制的流媒体数据结构,大幅提高了系统性能。
高清监控存储是一种大码流多并发写为主的存储应用,对性能、并发性和稳定性等方面有很高的要求。该存储解决方案采用独特的大缓存顺序化算法,把多路随机并发访问变为顺序访问,解决了硬盘磁头因频繁寻道而导致的性能迅速下降和硬盘寿命缩短的问题。
针对系统中会产生PB级海量监控数据,存储设备的数量达数十台上百台,因此管理方式的科学高效显得十分重要。云存储可提供基于集群管理技术的多设备集中管理工具,具有设备集中监控、集群管理、系统软硬件运行状态的监控、主动报警,图像化系统检测等功能。在海量视频存储检索应用中,检索性能尤为重要。传统文件系统中,文件检索采用的是“目录-》子目录-》文件-》定位”的检索步骤,在海量数据的高清视频监控,目录和文件数量十分可观,这种检索模式的效率就会大打折扣。采用序号文件定位可以有效解决该问题。
云存储可以提供非常高的的系统冗余和安全性。当在线存储系统出现故障后,热备机可以立即接替服务,当故障恢复时,服务和数据回迁;若故障机数据需要调用,可以将故障机的磁盘插入到冷备机中,实现所有数据的立即可用。
对于高清监控系统,随着监控前端的增加和存储时间的延长,扩展能力十分重要。市场中已有友商可提供单纯针对容量的扩展柜扩展模式和性能容量同步线性扩展的堆叠扩展模式。
云存储系统除上述优点之外,在平台对接整合、业务流程梳理、视频数据智能分析深度挖掘及成本方面都将面临挑战。承建大型系统、构建云存储的商业模式也亟待创新。受限于宽带网络、web2.0技术、应用存储技术、文件系统、P2P、数据压缩、CDN技术、虚拟化技术等的发展,未来云存储还有很长的路要走。
以上是小编为大家分享的关于大数据时代下的三种存储架构的相关内容,更多信息可以关注环球青藤分享更多干货
『叁』 大数据时代下我国智慧体育应该如何构建呢
首先要让人们了解智慧体育的发展内涵,通过让人们体会到智慧体育的应用优势,来提高人们参与体育的积极性,促进智慧体育的构建。在当前社会发展的背景下,借助新兴的新媒体行业来完成这一任务,不仅能够充分发挥新媒体的应用优势,也更符合当前人们的生活方式,能有效促进体育事业发展的效果。
在对智慧体育进行宣传时,首先,建立全面的体育运动网站,满足人们了解体育运动的需求。体育网站的建立,能够成为当前社会体育爱好者的网络平台聚集地,在扩大体育运动影响范围的同时,提高体育运动的曝光量,让更多的人看到体育运动的优势和好处,来提高社会公众对体育运动的关注度。
从当前我国体育行业的发展状况来看,体育品牌的发展仍不完善,与发达国家之间仍然存在一定的差距。在大数据时代背景下,要想构建智慧体育,还要建设更加优质的体育智能用品品牌,既能够促进我国体育事业的发展,也能够提高我国体育产品在国际市场中的竞争力。
在建设优质的体育智能用品品牌时,企业需要充分借助互联网技术,在充分了解公众需求后,设计出更加符合人们需求的产品。而在对体育产品进行研发和生产时,企业要将体育产品的生产成本控制在合理范围内。
在销售体育产品时,企业需要仔细的研究和分析当前市场的发展方向和趋势行,通过更加精准的广告投放来扩大宣传效果,提高体育品牌的知名度,达到建设品牌的目的。而在产品成功销售之后,企业还要健全和完善售后服务,以更加优质的服务来提高消费者对体育产品的满意度,巩固体育品牌的市场竞争力,促进我国优质体育品牌的建立,促进体育事业的进一步发展。
『肆』 大数据时代的IT架构设计怎么样,好不好
IT架构设来计即使没有什么大数据也早自有了。而这项工作的目的和意义就决定了它是做什么,以及它依据什么做。这与大不大数据无关。所谓大数据只是一种噱头,外行叫着热闹,以为多高深。其实真正搞过数据仓库等海量数据应用等的,都明白是怎么回事。就算你很看重这个“大数据”的概念,那我顺着你这个说,这也就是一种需求而以。刚才我说过了IT架构设计依据什么来做,需求嘛!做就是了。有什么样的需求,就有什么样的设计。而这个设计好不好?谈不上。因为需求决定的东西,再丑陋也是要那样。相对于同一个需求来说,合适的设计即使不同人来做,差不也多都一样,不合适的设计才各式各样。因为是需求决定的。如果一定要说好不好,那也只能是设计师个人水平的差异了。
『伍』 大数据时代,数据如何驱动设计
用户反馈数据不仅可以获得后台数据库无法获取到的用户行为数据,也可以了解用户的主观态度、用户观点,将主观感受应用到产品设计中助力产品设计。
『陆』 求《大数据时代的it架构设计》全文免费下载百度网盘资源,谢谢~
《大数据时代的it架构设计》网络网盘pdf最新全集下载:链接:https://pan..com/s/1DVfpum_a_YUAu4Nxuo3s6g
?pwd=yklu 提取码:yklu简介:《大数据时代的IT架构设计》以大数据时代为背景,邀请企业中一线架构师,结合实际工作中的实际案例展开架构相关的讨论。《大数据时代的IT架构设计》作者来源于互联网、教育、传统行业等领域,分享的案例实用,基本上代表了该领域比较先进的架构。无论读者属于什么行业都可以从本书中找到相关的架构经验,对读者在今后的架构设计工作中都能起到很好的帮助作用。
『柒』 大数据下的地质资料信息存储架构设计
颉贵琴 胡晓琴
(甘肃省国土资源信息中心)
摘要 为推进我国地质资料信息服务集群化产业化工作,更大更好地发挥地质资料信息的价值,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。
关键词 大数据 地质资料 存储 NoSQL 双数据库
0 引言
新中国成立60多年来,我国形成了海量的地质资料信息,为国民经济和社会发展提供了重要支撑。但在地质资料管理方面长期存在资料信息分散、综合研究不够、数字化信息化程度不高、服务渠道不畅、服务能力不强等问题,使地质资料信息的巨大潜在价值未能得到充分发挥。为进一步提高地质工作服务国民经济和社会发展的能力,充分发挥地质资料信息的服务功能,扩大服务领域,国土资源部根据国内外地质工作的先进经验,做出了全面推进地质资料信息服务集群化产业化工作的部署。
目前,全国各省地质资料馆都在有条不紊地对本省成果、原始和实物地质资料进行清理,并对其中重要地质资料进行数字化和存储工作。然而,由于我国地质资源丰富,经过几十年的积累,已经形成了海量的地质资料,数据量早已经超过了几百太字节(TB)。在进行地质资料信息服务集群化工作中,随着共享数据量的不断增大,传统的数据存储方式和管理系统必然会展现出存储和检索方面的不足以及系统管理方面的缺陷。为了解决该问题,需要设计更加先进的数据存储架构来实现海量地质资料的存储。
而大数据(Big Data)作为近年来在云计算领域中出现的一种新型数据,科技工作者在不断的研究中,设计了适合大数据存储管理的非关系型数据库NoSQL进行大数据的存储和管理。本文将针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,提出一种海量地质资料存储架构,改进现有系统存储架构,以便于我国全面推进地质资料信息服务集群化产业化工作。
1 工作现状
1.1 国内外地质资料信息的存储现状
在美国,主要有两大地质资料公共服务平台,分别是地球科学信息中心(ESIC)、地球资源观测和科学中心(EROS),其目的是通过为社会和政府提供更加便利、快速的地质信息服务。20世纪90年代初,澳大利亚出台了国家地球科学填图协议,采用先进的科学方法和技术进行数据存储,从而形成了第二代澳大利亚陆地地质图。
目前,我国地质资料信息服务集群化产业化工作刚刚起步,虽然国土资源部信息中心已经开发了地质资料信息集群化共享服务平台,并倡导各地方用户使用该系统。但由于各个地方早期的工作背景不一致,因此各地方所使用的存储系统也不尽相同,主要有Access、SQL Server、Oracle、MySQL等系统。本文以国土资源部信息中心开发的地质资料信息集群化共享服务平台的存储系统MySQL为例说明。该系统是基于关系数据库管理系统MySQL的一套分布式存储检索系统。该系统的部署使得我国地质资料信息服务集群化产业化工作取得了重大进展,同时也为我国建立标准统一的地质资料信息共享服务平台和互联互通的网络服务体系奠定了坚实的基础。然而,该系统的研发并没有考虑到地质资料信息进一步集群化以及在未来地质资料信息进入大数据时代的信息共享和存储管理问题,也没有给出明确的解决方案。
1.2 大数据的存储架构介绍
大数据是近年在云计算领域中出现的一种新型数据,具有数据量大、数据结构不固定、类型多样、查询分析复杂等特点。传统关系型数据库管理系统在数据存储规模、检索效率等方面已不再适合大数据存储。NoSQL(Not Only SQL)是与关系数据库相对的一类数据库的总称。这些数据库放弃了对关系数据库的支持,转而采用灵活的、分布式的数据存储方式管理数据,从而可以满足大数据存储和处理的需求。NoSQL基于非关系型数据存储的设计理念,以键值对进行存储,采用的数据字的结构不固定,每一个元组可以有不一样的字段,且每个元组可以根据自己的需要增加一些自己的键值对,可以减少一些检索时间和存储空间。目前,应用广泛的 NoSQL 数据库有 Google BigTable、HBase、MongoDB、Neo4 j、Infinite Graph等。
2 大数据下的地质资料信息存储架构设计
根据国土资源部做出的全面推进地质资料信息服务集群化产业化工作的部署,国土资源部倡导全国地质资料馆使用国土资源部信息中心开发的地质资料信息集群化共享服务平台,实现地质资料信息的存储和共享。该系统采用了数据库管理系统MySQL作为数据存储系统。
为了与现有系统和现有的工作进行对接,并为将来地质资料进入大数据时代后的存储工作做准备,本文设计了一种能用于海量地质资料信息存储并且兼容MySQL的分布式的数据存储架构(图1)。
整个系统可以根据不同的用户等级分为不同的用户管理层,由于图幅限制,在图1 中仅仅展示了3级:国家级管理层(即共享服务平台用户层)、省级管理层以及市级管理层(可根据实际需要延伸至县级)。
每级管理层的每个用户可以单独管理一个服务器。如国土资源部信息中心可以单独管理一个服务器;甘肃省国土资源信息中心可以单独管理一个服务器,陕西省国土资源信息中心可以单独管理一个服务器;甘肃的若干个市级国土资源局可以根据需要分别管理各自的服务器。
在服务器上分别安装两套数据库管理系统,一套是原有的MySQL数据库管理系统,另一套是为大数据存储而配备的NoSQL型数据库管理系统。在服务器上还专门开发一个数据库管理器中间件,用于进行用户层和数据库的通信以及两套数据库之间的通信。
由于各个管理层都各自维护自己的数据库和数据。当用户需要进行数据存储时,他所影响的数据库仅仅是本地数据库,存储效率较高;当用户需要从多个数据库读取数据时,顶层的共享服务平台会根据用户需求进行任务分解,将任务分发给下层的管理层进行数据库读取,由于各个数据库并行读取,从而提高了数据库读取效率。
图1 大数据下的地质资料信息存储架构框图
2.1 用户管理层
用户管理层根据权限范围,分为多层(本文以3层为例)。
位于顶层的国家级管理层(共享服务平台用户层)负责用户访问权限的分配、与其直接关联的数据库的访问、下级管理层任务的分配等工作。
用户访问权限的分配是指为访问本共享服务平台的个人用户和单位用户分配数据的使用权限、安全性的设计等。
与其直接关联的数据库访问是指直接存储在其本地数据库上的数据的访问。在该数据库中不仅要存储所需要的地质资料,还要存储注册用户信息等数据。
下级管理层任务分配是指如果用户需要访问多个下层数据库,用户只需要输入查询这几个下层数据库的命令,而如何查找下层数据库则由该功能来完成。例如某用户要查找甘肃、陕西、上海、北京的铁矿分布图,则用户只需要输入这几个地方及铁矿等查询条件,系统将自动把各个省的数据库查询任务分派到下级管理层。
同理,位于下层的省级管理层和市级管理层除了没有用户访问权限功能外,其余功能与国家级管理层是相同的。各层之间的数据库通过互联网相互连接成分布式的数据库系统。
2.2 MySQL和NoSQL的融合
MySQL是关系型数据库,它支持SQL查询语言,而NoSQL是非关系型数据库,它不支持SQL查询语言。用户要想透明地访问这两套数据库,必须要设计数据库管理器中间件,作为用户访问数据库的统一入口和两套数据库管理系统的通信平台。本文所设计的数据库管理器简单模型如图2所示。
图2 数据库管理器模型
服务器管理器通过用户程序接口与应用程序进行通讯,通过MySQL数据库接口与MySQL服务器通讯,通过NoSQL数据库接口与NoSQL数据库接口通讯。当应用程序接口接收到一条数据库访问命令之后,交由数据库访问命令解析器进行命令解析,从而形成MySQL访问命令或者NoSQL访问命令,通过相应的数据库接口访问数据库;数据库返回访问结果后经过汇总,由应用程序接口返回给应用程序。
两套数据库可以通过双数据库通信协议进行相互的通信和互访。此通信协议的建立便于地质工作人员将已经存入MySQL数据库的不适合结构化存储的数据转存到NoSQL数据库中,从而便于系统的升级和优化。
2.3 系统的存储和检索模式
在本存储框架设计中,系统采用分布式网络存储模式,即采用可扩展的存储结构,利用分散在全国各地的多台独立的服务器进行数据存储。这种方式不仅分担了服务器的存储压力,提高了系统的可靠性和可用性,还易于进行系统扩展。另外,由于地质资料信息存储的特殊性,各地方用户的数据存储工作基本都是在本地服务器进行,很少通过网络进行远程存储,所以数据存储效率较高。
在一台数据库服务器上安装有MySQL和NoSQL型两套数据库管理系统,分别用于存储地质资料信息中的结构化数据和非结构化数据。其中,NoSQL型数据库作为主数据库,用于存储一部分结构化数据和全部的非结构化数据;而MySQL数据库作为辅助数据库,用于存储一部分结构化的数据,以及旧系统中已经存储的数据。使用两套数据库不仅可以存储结构化数据而且还可以适用于大数据时代地质资料信息的存储,因此系统具有很好的适应性和灵活性。
2.4 安全性设计
地质资料信息是国家的机密,地质工作人员必须要保证它的安全。地质资料信息进入数字化时代之后,地质资料常常在计算机以及网络上进行传输,地质资料信息的安全传输和保存更是地质工作人员必须关注和解决的问题。在本存储架构的设计中设计的安全问题主要有数据库存储安全、数据传输安全、数据访问安全等问题。
数据库设计时采用多边安全模型和多级安全模型阻止数据库中信息和数据的泄露来提高数据库的安全性能,以保障地质信息在数据库中的存储安全;当用户登录系统访问数据库时,必须进行用户甄别和实名认证,这主要是对用户的身份进行有效的识别,防止非法用户访问数据库;在对地质资料进行网络传输时,应该首先将数据进行加密,然后再进行网络传输,以防止地质信息在传输过程中被窃取。
3 结语
提高地质资料数字化信息化水平,是国外地质工作强国的普遍做法。为推进我国地质资料信息服务集群化产业化工作,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。该存储架构的设计只涉及了简单模型的构建,具体详细复杂的功能设计和软件实现还需要在进一步的研究工作中完成。
参考文献
[1]吴金朋.一种大数据存储模型的研究与应用[D].北京:北京邮电大学计算机学院,2012.
[2]吴广君,王树鹏,陈明,等.海量结构化数据存储检索系统[J].计算机研究与发展,2012,49(Suppl):1~5.
[3]黄
,易晓东,李姗姗,等.面向高性能计算机的海量数据处理平台实现与评测[J].计算机研究与发展,2012,49(Suppl):357~361.
『捌』 大数据时代,数据是如何激发设计创造力的
1.许多竞争因素会启示产品的设计决策,共有有六种因素:定量数据,定性数据,战略利益,用户利益,网络利益,商业利益。2.数据可以帮助设计者优化工具,3.数据可以决定一项内容的变革
『玖』 大数据时代下LOGO设计长什么样
一款仅仅被堆砌组合的标志设计不一定能够影响人们的行为,只有被人们深刻记住的标志才可能影响日后的购买消费行为。所以成功的标志设计必须力求给人们留下深刻的记忆。充分利用logo形象记忆的优势:要增加观者的记忆度,可利用形象记忆的方式进行。形象记忆是以直观的、具体形象为内容的记忆,而直观的、具体形象一般比抽象的形象更容易记忆。所以,在标志设计中可有意采用写实或象征的具体形象进行表达,这样不仅可以吸引观者的注意,还可以使人一目了然,增加知觉度,提高记忆效果。减少标志设计中图案元素的数量:为了使观者有效地记住品牌标志信息,首先应尽可能地减少记忆内容的数量。由于观者一般没有刻意记住品牌商标的动机,对标志的记忆的时间一般也不会超过1分钟,在这样短的时间内,材料越少,记忆水平就越高。所以,为了提高观者对标志的记忆率,在标志设计中,会以以简洁、鲜明、准确为表达的出发点,令人一目了然。通过深层理解增加记忆:理解是识记信息材料的重要条件。建立在理解基础上的标志设计,有助于信息材料识别的全面性、准确性和巩固性,其效果优于单纯性的机械识记。这是由于理解能使品牌标志与观者已有的知识经验联系起来,把新信息材料纳入已有的知识结构中去,从而能起到潜移默化地加深logo设计的记忆效果。考虑不同观者的记忆特点:由于观者群体是由不同年龄、性别、职业、文化、经历、生活方式的人群所组成的,在记忆能力、记忆习惯等方面有很大的差别。比如,儿童一般对夸张、形象、活泼、鲜艳的事物容易记忆,而老年人的记忆力往往有明显的衰退。因此标志设计传达应考虑不同观者的记忆特点,针对不同消费群体进行量身设计,才能有效地强化观者的品牌记忆。增加刺激素材的视觉组合:要想增加观者辨认刺激物的兴趣,应当设法进行刺激物的视觉组合。如在标志设计中,可采用形意结合、形字结合、形色结合等方法来增加信息的传递量。这样结合的效果等于增加了标志的信息含量,使观者通过趣味视觉,在分析中加深对标志的印象。作为一家专业的广告公司,瑞颜在市场上运作中处理了各种行业风格的图标应用设计,通过设计师的不断努力,不仅赢得了很多的老客户,而且也积累有不断创新的思想,瑞颜励志为每一位选择我们的客户设计出最具风格的logo图案。广州瑞颜广告集营销策划、品牌咨询、创意设计、公关执行、影视创作与媒介代理为一体的综合专业广告机构,真正做到集策略、创意、执行于一体,始终站在最终顾客的角度,依照客户的品牌战略,创造出准确的、极具商业价值的品牌体验。