大数据精准营销的案例|大数据可以做到精准营销

❶ 大数据时代,招商快车十大精准营销案例

大数据时代,招商快车十大精准营销案例

2015年,招商快车——中国最大全渠道大数据营销服务供应商大动作频频,先后与志高、蒙牛、迪士尼、茅台集团、太太乐、三九集团、长松咨询、上海证大、昂立教育、优速通达十大知名品牌达成深度战略合作——从企业营销代运营到大数据精准营销匹配服务。截止目前,招商快车销售额同比增长350%,一线合作企业占比60%,势态喜人。互联网+大数据时代的来临,招商快车勇于突破,敢于先行,DSP商机速配平台、DMP数据营销平台应运而生,全渠道大数据营销服务供应商驻足当代。

2015年是“互联网+”发展的元年,李克强总理在两会期间提出“互联网+”行动计划,互联网首次写入国家政策纲要,标志着互联网产业在新常态经济下的重要作用。随着互联网+战略的不断深化,大数据的话题在新媒体环境下裂变式传播,大数据一词也慢慢被大众所熟知,特别是在“云计算”和“物联网”的广泛应用,大数据的价值越来越受重视和关注。2015年9月5日,国务院发布的《促进大数据发展行动纲要》,全面推进大数据发展和应用;奥巴马的竞选团队依据选民的微博,实时分析选民对总统竞选人的喜好,无不标志着大数据时代的到来。

思路决定出路。大数据时代如山洪猛兽滚滚而来,招商快车基于超过2000万的渠道商、创业者精准数据库,截止日前,招商快车已完成超过2000万IT软硬件设备升级的投入,打造以DSP商机速配平台为核心、以DMP营销数据平台为有力支撑的两大超级平台。依托大数据营销智能化应用、服务,致力于为处于不同生命周期的中国企业,围绕营销及金融价值链中所产生的商业困惑,提供一站式商业模式定位、渠道系统建设、营销内核构造、营销教练、营销外包、O2O解决方案、全网营销、微商解决方案、DMP营销数据应用、DSP商机速配服务、金融增值服务等全渠道大数据营销服务。

十大精准营销案例。由于商业模式成功升级以及IT软硬件设备的成功导入,招商快车先后与志高、蒙牛、迪士尼、茅台集团、太太乐、三九集团、长松咨询、上海证大、昂立教育、优速通达十多家国内外知名企业达成深度合作,销售额同比增长350%,一线品牌企业客户占比60%,创下历史新高。

(2015招商快车十大经典案例)

以志高为例,招商快车结合双方知名度及影响力,为志高制定“互联网+家电+大数据营销”战略,一、提供营销拓展代运营服务;二、依托招商快车DMP营销数据平台为志高提供大数据营销配套;三、全渠道招商落地执行,帮助志高扩大国内外市场占有率,持续推进志高集团由“中国制造”向“中国创造”产业升级。

大数据时代背景下的全球经济,是一场以信息科技为核心的商业革命,它将颠覆传统经济形式、重构全球经济格局新兴产业链。招商快车成功升级商业模式,致力于帮助中国企业提高生产力、降低运营成本,减少运营盲区,使资源配置合理化,经济效益最大化,从而实现国民经济与商业价值的战略双赢。

以上是小编为大家分享的关于大数据时代,招商快车十大精准营销案例的相关内容,更多信息可以关注环球青藤分享更多干货

❷ 大数据怎么做精准营销的

中国联通大数据获客平台:

1,官方运营商数据,实力

2,根据用户行为及应用场景进行画像分析建立模型

3,数据不出厂,云外呼,且经过过敏,加密,不留底,无安全风险

4,按需按量提供实时线索资料

❸ 大数据精准营销到底是什么

以大数据将消费者的消费喜好精准定位,帮助公司定位目标客户群,使营销精准、高效。版比如:我经权常在网上关注和购买数码类的产品,我朋友比较喜欢在网上买衣服,那么广告主就会抓住这些数据给并且进行分析然后推送广告。然而在同一个网站上我跟我朋友看到的广告又是不一样的,我看到的肯定是数码类的,我朋友看到的肯定是服装类的广告。这就是所谓的大数据精准营销至于有哪些企业我知道的也不是很清楚,不过在网上看到的这种广告大多都是 网络推广,广点通,久旭推广。不一定非要杭州的,只要在这方面有优势的就可以。希望对你有帮助,望采纳

❹ 基于大数据的精准营销与应用场景

基于大数据的精准营销与应用场景

大数据营销时代来临营销学领域过去半个多世纪的发展让我们见证了从“以产品为中心”到“以客户为中心”的转变。随着近年来互联网、移动互联网、新社交媒体的发展,信息过载,数据爆炸、消费者个性化需求的凸显,消费者成为商业行为的主宰者;另一方面,大数据分布式存储、大数据分析及挖掘技术的发展使得对海量数据中收集、分析、整合并进行分析成为可能。基于大数据精准营销这个过程对企业的营销战略提出了很大的机会和挑战。 基于数据的营销基本过程: 基于大数据的精准营销过程分为:采集和处理数据、建模分析数据、解读数据这么三个大层面。通过对客户特征、产品特征、消费行为特征数据的采集和处理,可以进行多维度的客户消费特征分析、产品策略分析和销售策略指导分析。通过准确把握客户需求、增加客户互动的方式推动营销策略的策划和执行。 1、数据层:采集和处理数据 大数据处理的数据类型包括:括图片、文本、网页、社交网络,还有传统的交易数据。 不局限在传统采集数据的过程一般是有限的、有意识的、结构化的进行数据采集你能采集 2、业务层:建模分析数据 使用的数据分析模型,例如基本统计、机器学习、例如数据挖掘的分类、聚类、关联、预测等算法。 3、应用层:解读数据 数据指导营销最重要的是解读。传统一般是定义营销问题之后,采集对应的数据,然后根据确定的建模或分析框架,数据进行分析,验证假设,进行解读。解读的空间是有限的。 而大数据提供了一种可能性,既可以根据营销问题,封闭性地去挖掘对应数据进行验证,也可以开放性地探索,得出一些可能与常识或经验判断完全相异的结论出来。可解读的点变得非常丰富。 大数据营销数据类型: 人口统计学数据:包括用户的年龄、性别、国籍、注册时提供的信息; 用户行为数据:访问、页面停留时长、触点等。 用户内容偏好数据:感兴趣的话题、评论内容、品牌偏好、位置偏好、时间偏好等。 交易数据:实际订单、客单件、订单转化率、促销响应率等大数据营销应用场景:从企业营销应用层面上看,主要是围绕客户、产品、消费行为三大元素进行营销策略的制定和实施的。这三要素之间彼此独立又相互联系,每个独立要素都可制定营销策略,同时三要素之间的关联组合更是企业制定有效营销策略的关键。 应用1:客户价值识别(用户特征) 通过对用户交易历史数据收集; 进行RFM分析,定位最有价值用户群及潜在用户群。最具价值客户提高忠诚度;潜在用户:主动营销促使产生实际购买行为。客户价值低用户群在营销预算少的情况下考虑不实行营销推广。 通过因子分析,发觉影响用户重复购买的主要因素,从类似:价格因素、口碑原因、评论信息等信息中识别主要因素及影响权重,调整产品或市场定位。查明促使顾客购买的原因指导,调整宣传重点或组合营销方式。 应用2:用户行为指标: 通过对用户行为数据收集; 通过用户行为渠道来源的自动追踪:系统可自动跟踪并对访客来源进行判别分类,根据三大营销过程对付费搜索、自然搜索、合作渠道、banner广告、邮件营销等营销渠道进行营销跟踪和效果分析。 营销效用方面:知道具体的用户身受哪种媒体营销的影响,他们怎样进入特定网站,跨屏、浏览某个网站时他们会做什么。 根据地理位置分别设定目标,比如大多数中上层人士,居中位置比较集中。不在是笼统的客户群。 应用3:个性化关联分析 通过对用户购买了什么产品、浏览了什么产品、如何浏览网站等网站行为数据收集;通过分析客户群需求相似程度、产品相似度,通过个性化推荐引擎向用户推荐哪些产品或服务是哪些用户感兴趣的。他们在多大程度上被促销活动、其他买家对产品的评论所影响。 大数据精准营销面临挑战: 1、多渠道融合进行精准营销:全球数据爆炸、移动互联网、社会化媒体、可选渠道和设备增加、不断变化的消费者特征、营销自动化:营销和销售行为、供应链、客户关系都整合在一起。如何更好的实现将各渠道数据融合对提高精准营销的准确度提出挑战。 2、最近几年,互联网的产品呈现出一轮爆发性发展态势。尤其是移动终端的普及,使得很多传统的互联网产品也开始移动化。地理位置融入社会化媒体营销是精准营销要考虑的问题。 3、基于数据挖掘的即时营销:企业如今正在渐渐远离批量处理,转向实时分析来获取竞争优势。精准营销也要求在活动的同时我们就能得到数据,立即优化营销效果。 4、精准营销系统:自助式营销、可扩展的场景及营销规则管理功能。

以上是小编为大家分享的关于基于大数据的精准营销与应用场景的相关内容,更多信息可以关注环球青藤分享更多干货

❺ 有没有一个有具体数据的大数据营销案例

暂无大数据营销案例。目前大数据还都是刚刚兴起,第一是拥有大数据的企业版很少,第二是拥有权大数据且具有足够的大数据挖掘分析的人才的企业更是屈指可数,第三是大数据挖掘分析的作用在银行、金融、政务、电商等平台起到的作用都非常大,绝大多数的精力都还放在如何提升效率和效益上,能用于营销的精力真的很少。

❻ 什么是大数据精准营销

大数据是大量、高速、多变的信息,它需要新型的处理方式去促成更强的决策能力、洞察回力与最佳答化处理。大数据为企业获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。借助大数据及相关技术,我们可针对不同行为特征的客户进行针对性营销,甚至能从“将一个产品推荐给一些合适的客户”到“将一些合适的产品推荐给一个客户”,得以更聚焦客户,进行个性化精准营销。招商快车本身是专业做营销服务的,在大数据精准营销更有话语权,你可以了解一下。

❼ 大数据可以做到精准营销

通过准确的数据分析,能够了解很多关于消费者的消费方面的信息,具体是还内说呢么就不说了,大数据的更容大意义在于通过分析得知以后该往什么样的方向发展,说做到精准的营销有点夸张了,不过在一定的程度上是有一定的营销价值的。

❽ 大数据分析 让精准营销进入企业

大数据分析 让精准营销进入企业新的营销拓展软件帮助公司从普通销售方法中挖掘出价值——使它们牢牢掌握现有客户。2013年,Russ Hearl开始尝试扩大自己的公司——位于旧金山的Double Dutch,建立一个面向社交网络软件和活动的市场。在一个只有3名销售人员的团队中,从零开拓这个市场需要经过一番艰苦紧张的工作,每天都在打电话,但是仍然不清楚谁是目标客户。Double Dutch的全球销售发展副总裁Hearl说:“我们的销售团队实际上都在孤立地拓展业务。当时完全没有成体系的增长动力。”因为这种社交会议软件仍然属于一个年轻的市场,缺少在网络的曝光率,当时甚至还没有通过搜索引擎优化来开展业务——即研究人员使用的关键字来增加公司网站流量。所以,他各自为战的成员们仍然不得不采用一些老方法来拓展业务:打电话,一个个地向外推销虚拟会议软件的商业案例。但是,电话营销是一个很困难的工作。打电话给陌生人,完全不清楚对方的背景,这种方法是效率很低的。Double Dutch需要更好的信息,才能在众多销售中挖掘出有用信息,如了解谁是永远不会买我们东西的,以及找到一些会议技术决定制定者。在实现Salesforce.com一个月左右之后,Hearl上线了Inside Sales营销拓展软件,这个软件可以帮助他的团队发现真正对他软件感兴趣的公司,以及有购买决策权的人。Hearl说:“我希望将时间浪费减到最小,而打电话给完全对业务毫无兴趣的人就是浪费时间。”Inside Sales让Double Dutch能够在这些公司中发现活动规划者的数量,然后再将注意力集中在这些方面。Hearl指出,今年迄今为止,在预算保持不变的前提下,销售团队在生成的3,000潜在客户中发现了350个真实机会。显然,这里显然需要了解潜在客户信息的数据公司参与。根据Decision Tree Labs在2013年所作的调研,有59%的B2B市场商人对他们的营销打分模型缺少信心,原因是信息不完整;另外有44%的人表示他们还不清楚哪些属性能够反映购买行为。另一家营销拓展软件公司Lattice Engines的首席市场官Brian Kardon说:“真正的挑战在于数量多带来的麻烦。销售可以打电话给任意数量的潜在客户。但问题是:‘应该先打电话给谁,以及谁最可能购买产品呢?’”一个新兴市场Inside Sales是一种新型软件,它们专门收集公司数据(内部与外部),然后优化对潜在客户及现有客户的分析。有一些人将它称为营销自动化,有一些人将它称为多维营销拓展,还有一些将它称为销售加速软件。无论叫什么名称,这项技术都会使用数据来帮助公司基于复杂条件来更好地发现潜在销售,深入挖掘现有客户的关系,然后在赶在客户之前发现可能的业务问题。这些技术能够组合利用外部数据库数据(如)、公共记录与公司内部CRM、销售及其他客户数据。Gartner公司研究主管Todd Berkowitz说:“当营销软件服务公司Marketo和Eloqua出现时,你只能将一些营销方法交给销售人员,由他们来演示自己是什么,以及他们在公司网站上做了什么。这种方式会持续一段时间。然后,我们就在购买环节看到一些变化,即供应商的权力在削弱,而购买者的权力在增强。传统的销售记分模式是有问题的。”现在,有许多新创公司宣布进入这部分市场,其中包括Inside Sales、Lattice Engines和Salesfusion。这些供应商表示,他们可以帮助公司根据预测条件来优化真实的营销方法,即发现哪些客户准备购买,以及可以给哪些现有客户销售更多的产品和服务。例如,Juniper Networks也是Lattice Engines的一个客户,它发现一些新客户最近搬进了新的办公室,他们准备购买交换机和路由器。其他的提示信息可能包括新专利或收到政府大订单。Lattice Engines的Kardon说:“你想要寻找的是一个活动标识,它将预示着有一个购买周期出现。”建立更好的客户关系美国亚特兰大州的SunTrust银行是一个地方银行,它通过深度挖掘客户关系来产生业务。银行副总裁及商务顾问Andrew Yearwood指出,在银行开始使用Lattice Engines之前,它使用各种内部系统来收集客户信息,以准备一个销售电话。这个过程非常耗费时间且效率低下,而且还可能因此无法及时获得正确的客户信息。Yearwood描述说:“你必须登录多个系统,而且所有系统都有独立的登录帐号。有一些是大型主机,有一些则是基于Web,有一些还会有很深的文件夹层次——根本不可能是一下点击就出报表那样简单。因此,大多数销售人员表面上会承认说他们没有把工作做好,但是他们内心是认为公司应该给我提供一些条件,帮助我把工作做得更好一些。”认识Lattice EnginesYearwood指出,通过使用Lattice Engines,销售人员现在只需要使用一个系统,就可以访问现有客户的信息,从中发现他们可能需要哪一些产品和服务。他说:“如果是一个公司,并且有一位审计会计,那么我们有很多其他类型的产品可以帮助你管理现金流。我们可以用报表帮助你完成业务,控制支付、付款及其他服务的安全性。我们可以使用这些数据来理解客户是如何使用这些工具来运营自己的业务,或者是否还有未购买的解决方案。”Gartner的Berkowitz说:“客户生命周期管理会给跨行业销售和向上销售带来很大的机会。你不仅会获得外部数据,也会丰富自己数据库的数据。这是一个非常强大的预报工具。”Yearwood指出,公司下一年度计划将这个软件应用到更多的方面,如营销拓展,但是目前仍有很多工作要做。权衡利弊即使这些工具在提高生产力及帮助销售团队方面有很多优点,但是这个软件仍然处于新生阶段,它也有一些局限性。例如,Yearwood希望Sun Trust能提供更灵活的数据视图。他说,虽然Lattice Engines“在显示快照方面做得很好,但是我们更希望它能够显示趋势数据和时间序列数据。而它现在还无法做到。”查看数据随时间的变化,然后对比各年度的数据,“可以让银行主与客户在讨论现金流或信用卡使用趋势时有更实质的互动内容。在这些谈话中,你会成为顾问,扮演着战略指引的角色。”Gartner的Berkowitz还提醒说,公司要考虑一些内部假设条件,这些技术模型会用这些假设来确定判断标准。他说:“这个软件的最大问题在于它是一个黑盒。有一些公司不敢相信他人提供的黑盒模型,因为这些算法是保密的。”Berkowitz指出,他还会尝试区分这个领域中不同供应商的差别。Berkowitz说:“在这一点上,他们都是相同的。但是,有一些供应商可能会宣称:‘我们已经将算法开源,然后围绕这些算法提供服务。’那么这就是一种差异性。”

❾ 如何利用大数据精准营销进行商品拓客

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉版、管理和处理的数据集权合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),平台有hadoop

赞(0)