车品觉大数据趋势|什么叫大数据与云计算有何关系

❶ 车品觉的著作

书名:决战大数据:驾驭未来商业的利器 出版社: 浙江人民出版社 ISBN:9787213060007 版次:1 商品编码:11421869 品牌:湛庐文化(Cheers Publishing) 包装:平装 丛书名: 湛庐文化 开本:16开 出版时间:2014-04-01 用纸:轻型纸 页数:240 正文语种:中文 作者认为大数据时代更多地改变了人类的思维模式,只有掌控大数据背后真正的思维变革才是决胜未来商业的关键。

❷ 《决战大数据(升级版)大数据的关键思考》epub下载在线阅读,求百度网盘云资源

《决战大数据(升级版)》(车品觉)电子书网盘下载免费在线阅读

链接:

提取码:edm6

书名:决战大数据(升级版)

作者:车品觉

豆瓣评分:7.9

出版社:浙江人民出版社

出版年份:2016-4

页数:310

内容简介:

在数据无限的时代,我们如何利用大数据实现商业大洗牌?传统行业又该如何通过挖掘隐藏在大数据背后的信息,冲出层层危机,实现行业质和量的飞跃?企业如何才能实现数据化运营,在大数据时代站稳脚跟?大数据实践的先行者、阿里巴巴集团前副总裁车品觉倾力新增8万字纯干货,倾情解读企业在大数据时代顽强生存的答案!只有稳抓趋势中的观战重点,才能在海量数据中挖掘商机!

随着智能手机的大范围普及、物联网浪潮以及人工智能技术的爆发式发展,大数据在收集消费者全渠道行为、触发商业机遇等方面发挥了越来越重要的作用。而《决战大数据》一书恰恰洞悉了大数据时代商业发展的本质。同时,车品觉根据其在阿里巴巴的多年经验,通过丰富的案例和通俗易懂的语言,从“养数据”到“用数据”,深入浅出地向我们揭开了阿里巴巴数据化运营和运营数据的神秘面纱。通过《决战大数据》一书,车品觉告诉我们,在数据无限的时代,拥有数据化思维,才能改变商业的未来。

作者简介:

车品觉

畅销书《决战大数据》作者

红杉资本中国基金专家合伙人

全国信标委大数据标准工作组副组长

阿里巴巴集团前副总裁,首任阿里数据委员会会长;拥有十几年丰富的数据实战经验,并在实践中形成了独特的数据化思考及管理方式,对大数据未来趋势有独到的见解。亲自领导阿里数据团队在大数据实践领域取得了一系列重要成果,包括为阿里建立集团各事业群的业务及决策分析框架,开发智能化的数据产品,成立了驱动集团数据化的运营团队,成功发起了公共与专有数据资产管理体系,还发布了数据安全规范等。

❸ 大数据时代,科技走到了宗教尽头

大数据时代,科技走到了宗教尽头

这是一个人人都言“大数据”的时代,然“大数据”存在于何处?影响于何处?难免,普通大众被席卷而来的“大数据”之潮迷乱了眼睛,搅乱了思绪。正是在这样的时刻,笔者认为尤为重要的是保有敬畏之心与清醒的思维,认识到“大数据”的局限性。

渗透时刻,无处不在的大数据

大数据可能是时下最吸引眼球的话题之一。从通过鲜花与安全套销量比分析不同城市的浪漫指数到发现深处内陆的新疆人民反而比基尼销量第一,从为节能减排做贡献到德国国家队利用大数据技术搜集球员信息征战世界杯到根据敌方机场起降信号,一分钟内分析出起降批次,战斗机型号等细节,再到获得获第86届奥斯卡金像奖最佳原创剧本奖的《她》,剧本内主角和人工智能系统之间感情逐渐加深直到爱上彼此,大数据给人带来无尽遐想,带来无限精彩的可能。

就像马云所说的那样,人类已经从IT时代走向DT时代。阿里巴巴集团数据委员会长车品觉在他的著作《决战大数据》里面也强调了两个重要观点:其一,大数据彻底消除了“样本偏差”(sample bias)。“样本跟大数据不同。大数据相信全量数据,而非样本;是分析得出,而不是抽样获得”;其二,大数据时代的相关性分析可以创造以前无法想象的场景。极端情况下,线上数据的积累,可以形成个人的”线上人格”,影响乃至控制人的线下行为。

傲慢是罪,保持一颗敬畏之心

大数据前景如此美好,竟让我无言以对。然而,傲慢是罪。“智慧果”让人类拥有了智慧,但同时也让离开伊甸园的人类从此无法摆脱傲慢的原罪。从“通天塔”到在“地上建立天国”,失去敬畏之心的人类往往给自己造成巨大伤害。大数据时代,同样应该保持一颗敬畏之心,认识到以下三点。

一、样本偏差始终存在,大数据没有超越统计学

什么是样本偏差?这方面最精彩的例子来自二战。其简化版本是,英国皇家空军苦恼于德军凶猛的防空炮火,想通过加强飞机装甲降低战斗机损耗率。但受制于飞机载重,只能在部分部位加强装甲。为此,他们求助于一位统计学家。在仔细观察成功返回机场飞机上的着弹痕迹后,专家给出了出人意料的结论:在没有着弹痕迹的部位加装装甲。面对质疑,统计学家只回答了一句话。“那些部位着弹的飞机都坠落了”。可见,统计学永远是个手艺活,没有两把刷子是要害死人的。

本质上来说,统计学就是用部分推测整体,用过去预测未来的理论体系。其最大的弱点在于部分推测整体时,样本偏差会让结论失效。那么,在大数据时代,是否真的来到了天堂,没有样本偏差的困扰了?答案显然是否定的。从现象上来看,即使在大数据时代,数据与应用场景也会有严重割裂。拿情人节鲜花和安全套比率这个例子来说,基于“你懂得”的原因,很多安全套消费发生在线下,线上无法获取该数据。因为技术手段或商业模式本身的限制,线上系统能采集到的数据只是完整场景中的一部分,不是全部数据。再比如新疆人民比基尼销量第一的例子。数据分析人员如果不能意识到真实场景中,新疆的比基尼销售量主要集中线上(线下传统渠道销量很少或者基本没有?)但其它省份比基尼销售主要在线下(线上销量占比8%~10%)就会得出错误的结论。同时,在新疆,淘宝天猫的网上销量基本代表了真实的网上销量。但在北上广这些一线城市,京东的线上销量已经和淘宝天猫相当,只考虑阿里系的数据,会严重低估真实销量。

从理论上分析,数据与应用场景的割裂本质上就是样本偏差。因为技术或者利益的原因,大数据时代搜集的数据也不能完全覆盖应用场景的各个环节,所取得的数据仍然是部分,不是全部。最后,从哲学层面来说,即使以后技术有了长足的进步,解决数据与场景的割裂问题,同时也有了完美的商业模式可以让竞争对手乐意互相分享数据,样本偏差仍然会存在。其核心在于,人类虽然有能力认识客观世界的所有规律,但客观世界本身并不是静止的,而是在不断运动当中。过去的数据,一定不能体现客观世界未来的发展规律。“刻舟求剑”的理念不符合实际。从这个角度上来说,“黑天鹅”事件的本质就是样本偏差。技术再先进,商业模式再精妙,也不能解决这个问题。所以说,即使在大数据时代,人们还是应该有敬畏之心,在这个时代,科技确实游走到了宗教边缘。

二、大数据结论是统计学意义上的整体性结论,并不是针对个体

任何基于统计学的理论分析和结论都是整体性的。阿西莫夫在他的著作《基地》里完美的阐述了这一观点。哈利.谢顿以银河系里2000万星球上百亿亿居民为研究对象,成功创建了心理历史学,并以此成功预测了银河帝国会经历长达三万年的黑暗野蛮时期和银河第二帝国的出现。但无法用该理论预测个体。所以它无法预言变异人骡的出现。若非第二基地的存在,整个复兴计划险些失控。《失控》也描述了类似的现象。深海里的鱼群作为一个整体,行为规律非常容易预测。但单个个体行为毫无规律,难以预测。淘宝/天猫的“千人千面”是大数据时代的重要尝试。其核心基于大数据,为淘宝/天猫客户展现个性化搜索结果。该项目核心细节并不为外人所知,但基于理论分析,可以做出合理的推测。首先,淘宝/天猫搜集的数据一定不是所谓的“全量数据”,现有条件下,很多与顾客购买兴趣相关的核心数据无法被搜集。其次,即使模型准确率能达到99%,对于一个上亿规模的平台来说,也有近千万的客户会有比较差的用户体验。基于此,“千人千面”个性化程度必须做合理化约束,否则,理想越美好,现实就会越骨感。

三、相关性始终不是因果,这方面应用陷阱和机会一样多

相关性分析是数据分析利器,同时又是最容易引入问题的地方。相关并不是因果。统计数据显示,冰淇淋销量上升时,水中溺死人数会迅速上升,两者之间呈现极强的正相关。那么冰淇淋消费会引起人溺死吗?答案显然是否定的。只是天气炎热会同时增加冰淇淋消费和人们水上活动的几率。一个更有说服力的例子是某个时期的统计数据显示,白酒价格和牧师收入之间有极强的正相关。难道牧师群体们一个个都是“酒肉穿肠过,佛祖心中留”?答案也是否定的,其真实原因只是因为通货膨胀同时导致了白酒价格和牧师收入水平上涨。在大数据时代,相关与因果的混淆可能导致的问题会远超以往。大数据时代,数据极为充分,计算能力极强,可以发现以往无法发现的相关性。这是大数据时代让人兴奋的地方。但同时,相关性与因果性的辨别难度极大提升。一旦判断失误,会引起极大的问题。譬如说,目前阿里小贷引以为豪的信用判别模型与自动放款。假设目前信用模型相关性失效,“即通货膨胀率长期稳定,白酒价格和牧师收入不再强相关”,那通过现有模型筛选的主体的真实信用等级会有极大风险,后果不堪设想。以上分析纯粹基于理论层面,并不指向某个具体项目,但随着大数据技术的进步,辨别相关性与因果性的难度会越来越大,风险也会越来越高。

这个世界最让人理解的就是它是不可理解的。这个世界最让人难以理解的就是它又是可以理解的。大数据时代,我们需要有一颗敬畏之心。傲慢是罪。

以上是小编为大家分享的关于大数据时代,科技走到了宗教尽头的相关内容,更多信息可以关注环球青藤分享更多干货

❹ 业务对数据需求的四大层次

业务对数据需求的四大层次

数据的重要性已经被越来越多的公司、个人所熟知与接受,甚至于有过犹不及之势头。大数据的概念满天飞,似乎一夜之间人人都在谈论大数据,见了面不用大数据打招呼,好像就不是在数据圈子里混的了。那么,被外界传得神乎其神的数据,到底可以在哪些方面促进业务的腾飞?或者换种说法,业务对数据有哪些层次的需求?数据在哪些地方能够帮助业务?

结合笔者多年的工作经验以及对数据与业务的理解,业务对数据的需求归纳为四个层次。

第1层 知其然

我们可以通过建立数据监控体系,掌握发生了什么、程度如何,做到“知其然”。

具体来说,切入数据的角度主要有这几个方面。首先是“观天”,观察行业整体趋势、政策环境影响;再是“知地”,了解竞争对手的表现;最后是“自省”,自身做得怎么样了,自己的数据表现怎么样。从看数据的周期上来讲,“观天”可以是季度性或者更长的周期;“知地”按周或者月,特殊时间点、特殊事件情况下除外;“自省”类的数据拿到的是最全面的,需要天天看,专门有人看,有人研究。

在这一层上,分享两个看数据的观点:

1.数据是散的,看数据需要有框架。

怎么看数据很有讲究。零碎的数据很难发挥出真正的价值,把数据放到一个有效的框架里,才能发挥整体价值。所谓有效的框架至少包含两重作用:

(1)数据很多,不同人对数据需求不一样,如CEO、中层管理者、底层员工关注的数据通常是不一样的,有效的框架能够让不同的人各取所需。

(2)有效的框架能够快速地定位问题所在。举个例子,交易量指标大家都关心,如果某一天交易量指标掉了20%,那么,业务很大可能下是出了问题,但问题到底出在哪儿呢?如果只有几个高度抽象的指标,如转化率、成交人数、客单价等,是定位不到问题的。好的框架能够支持我们往下钻,从品类、流量渠道等找到问题所在,板子也就能打到具体的负责人身上了。这也是我们通常所说的,看数据要落地。

2.数据,有比较才有真相。

我有120斤,你说是重还是轻呢?一个孤零零的数据是很难说明问题的。判断某个指标增长快慢,需要选择正确的比较对象、参考系,也就是基准线。这个基准线可以是一个预先设定的目标,可以是同行业平均水平,也可以是历史的同期数据。

第2层 知其所以然

通过数据看到了问题,走到这一步还不够。数据只是表象,是用来发现、描述问题的,实操中解决问题更重要。数据结合业务,找到数据表象背后的真正原因,解决之。解决问题的过程就会涉及数据、数据加工,还可能会涉及数据模型之类的方法或者是工具,这里面技术含量比较高,另作篇幅介绍,这里不展开了。

在第二层里也有两点分享:

1.数据是客观的,但对数据的解读则可能带有很强的主观意识。

数据本身是客观的,但消费数据的是有主观能动性的人。大家往往在解读数据的时候带入主观因素:同样一个数据在A看来结论可能是好的,从B看来可能却得出截然相反的结果。不是说出现这样的情况不好,真理越辩越明。但假如不是通过数据找问题,而是先对问题定性,然后有选择地利用数据证明自己的观点,这种做法就不可取了。可事实上,我们的身边经常发生这样的事情。

2.懂业务才能真正懂数据。

车品觉老师的博文《不懂商业就别谈数据》对这个观点作了深刻阐述,这里不展开讲了。只是由于本观点的重要性,笔者特意拿出来做一下强调。

第3层 发现机会

利用数据可以帮助业务发现机会。举个例子:淘宝上有中老年服装细分市场,有大码女装市场,这些市场可以通过对周边环境的感知,了解到我们身边有一些中老年人或者胖MM在淘宝上面没有得到需求的满足。那么还有没有其他的渠道找到更多的细分市场呢?

数据可以!

通过用户搜索的关键词与实际成交的数据比较,发现有很多需求并没有被很好地满足,反映出需求旺盛,但供给不足。假如发现了这样的细分市场,公布出来给行业小二,公布出来给卖家,是不是可以帮助大家更好地去服务消费者呢?这个例子就是现在我们在做的“潜力细分市场发现”项目。

讲这个案例,不是想吹牛数据有多厉害,而是想告诉大家:数据就在那里,有些人熟视无睹,但有些人却可以从中挖出“宝贝”来。差异是什么呢?商业感觉。刚刚提到的搜索数据、成交数据很多人都能够看到,但以前没有人把这两份数据联系在一起看,这背后体现出的就是商业感觉。

第4层建立数据化运营体系

我理解的数据化运营,包含了两重意思:数据作为间接生产力和直接生产力。

1.数据作为间接生产力。

所谓间接生产力,是指数据工作者将数据价值通过运营传递给消费者,即通常所说的决策支持,数据工作者产出报表、分析报告等供各级业务决策者参考。我称之为决策支持1.0模式。然而随着业务开拓和业务人员对数据重要性理解的增强,对数据的需求会如雨后春笋般冒出来,显然单单依赖人数不多的分析师是满足不了的。授人以鱼不如授人以渔,让运营、产品的同学都能够进行数据分析,是我脑子中的决策支持2.0模式。

决策支持2.0模式有三个关键词:产品、能力、意愿。

让运营和PD掌握SQL这类取数语言,掌握SAS、SPSS这类分析工作,显得不大现实和必要。提供低门槛、用户体验良好的数据产品是实现决策支持2.0模式的基础。这里讲的产品,不仅仅是操作功能集,还需要承载分析思路和实际案例。

但是,数据分析的门槛始终是存在的。这就对运营和PD提出了新的基本能力要求,即基础的数学能力、逻辑思考能力和学习能力。

最后一个意愿,也许是最关键的,只有内心有强烈的驱动,想做好这件事情的时候,才有可能做好。

2.数据作为直接生产力。

所谓直接生产力,是指数据工作者将数据价值直接通过前台产品作用于消费者。时髦点讲,叫数据变现。随着大数据时代的到来,公司管理层越来越重视这一点。大数据时代带来了大的机会,但也可能是大灾难。如果不能利用数据产生价值,那么,它就是一个灾难——产生的数据越多,存储的空间、浪费的资源就越多。

现在比较好理解的一个应用就是关联推荐, 你买了一个商品之后,给你推荐一个最有可能再买的商品。个性化是数据作为直接生产力的新浪潮,这个浪潮已经越来越近。数据工作者们,做好迎接的准备吧。

以上是小编为大家分享的关于业务对数据需求的四大层次的相关内容,更多信息可以关注环球青藤分享更多干货

❺ 消费大数据揭秘:健康化和年轻化是趋势

消费大数据揭秘:健康化和年轻化是趋势大数据之美,在于它能从纷繁杂乱的数据中揭示出隐藏在水面以下的冰山部分,根据规律预测未来将要发生的事,告诉人们本不知道的信息。比如,中国女性平均从什么年龄段开始将关注度从游泳转向跳广场舞,不同年龄层消费者对健康饮食的关注度有何不同,Adroid终端和iOS终端在网购习惯上的差异等,这些都是庞大的销售数据和用户数据“勾兑”出的隐藏信息。《决战大数据》作者车品觉不久前曾向《第一财经日报》记者举例说,后台系统可以通过跟踪一个人敲击键盘的速度和间隔来判断他在购物网站上的浏览目的(是闲逛还是有目的购物)及其购买意愿的程度,背后的大数据发现了电商网站本不知道的内容。当然,如今的网购已进入移动化时代,今年双11阿里巴巴移动端的成交额占比高达68%,手机网购已成大势所趋。手机比PC提供了更加多元化和复杂的数据维度,比如基于地理位置LBS,这个变量的引入使大数据规模呈几何级数的增加,能给大数据分析提供更大价值。手机在手,人人都是数据传感器。事实上,这次由第一财经商业数据中心和阿里巴巴联合发布的大数据商业报告(以下简称“报告”),就从不同维度印证了移动化趋势的明显特征。这份报告也是淘系平台首次将全局性的消费数据依托专业媒体机构进行系统性对外公开,所涉及的服装、母婴、家电、食品等8个行业基本覆盖了消费者日常网购最高频的几个类目。食品消费理念健康化,小众化专业化运动消费映射全民健康意识觉醒,智能化浪潮引领3C数码行业消费升级,个性化时尚化网购习惯深入人心……这些数据背后的行业特点和趋势正是这份系列报告的核心价值所在。眼下,中国经济的活力正在越来越依靠消费提振,而消费层面正在经历一场由消费者主导的变革。过去那种商家生产什么消费者就买什么的年代愈发受到个性化消费需求的挑战,由消费者倒逼生产商的C2B模式正在不同的行业多点开花。在这个消费转型升级的宏观趋势中,经过加工提炼的大数据就成为厂商和商户最重要的决策依据。第一财经商业数据中心(CBNData)负责人黄磊在淘宝数据盛典现场表示,以往当有企业说经营越来越困难了,专家学者说经济要探底了,投资者说投资的这家企业很有发展潜力,他们常用的是直觉、经验,是用眼睛能看到的地方来证明机会和危机在哪里;现在这些都可以通过深度挖掘的大数据进行展示,并能更好地呈现出商业世界“魔鬼的细节”。健康成为未来消费主方向通过对过去5年淘系平台上的相关搜索和交易数据分析,报告展示出一条消费者愈发重视健康生活的曲线图,这主要从食品、运动健身、健康家居用品三个大品类体现。人们在线上购买这些商品,展现了吃得更健康、运动更积极、对健康更关注的趋势。从2011年开始,健康相关的关键词(比如有机、非转基因、原生态、低脂、无糖、无农药、全麦等)在淘宝上的销售量逐渐增长,今年前三季度的交易额已经与2014年全年持平。地域分布上,广东、江浙沪地区对这类商品的需求量最高。一个显著变化是,2011年全国健康食品销量最大的5个地区占全国总销量的近六成,到2015年三季度这一比例下降至近五成,健康食品的消费呈现出城市下沉的趋势,由经济发达的一线城市和沿海地区普及到内陆地区,各省份之间的健康食品消费份额差异正逐渐减少。报告得出的结论之一是,年轻女性将成为未来健康食品的主力消费人群。数据显示,作为食品中销量增速最快的保健品,其细分品类中增速最快的酵素类产品在2015年前三季度销售额环比增长了接近13倍,其次是膳食纤维、葡萄籽提取物等。女性是保健品消费主体,其中22岁到50岁的女性贡献保健食品总销售额的近六成份额,且年轻女性消费群体(18到28岁)在整体保健食品市场所占份额在提升。这部分消费者将是健康食品类商家重点覆盖的目标人群。消费者在运动健身类商品的网购购买力近几年维持在50%以上的年均增速,对跑步机等大型健身器械的销售占比排名第一,其次是游泳、舞蹈、瑜伽、羽毛球、跆拳道武术类相关商品。对不同运动项目的偏好在性别和年龄层维度展现出很大差异性。比如,小鲜肉热衷于足球、篮球、滑板、哑铃等中小器械;而大叔级买家青睐乒羽等小球类,以及跑步机等有氧训练。而女性以35岁为界分化明显,35岁之前的女性消费者最喜欢购买游泳相关商品,特别是泳装被当作时装来消费;而35岁之后,舞蹈类、跑步机等运动的比例最高,但瑜伽并没有体现出35岁这个年龄分水岭,占比基本持平。在健康家居用品(家用电器类和医疗器械类)方面,最近几年无论是从销量、搜索量,还是商品丰富度上均增速明显。其中空气净化器、口罩、净水器等商品与严重雾霾天气、水污染、疫情等公共安全事件表现出强关联性。年轻人对于社交媒体的关注让该群体对家用健康类产品表现出明显的焦虑性消费趋势。特别是空气净化器市场,在雾霾最严重的2012年初至2014年底迎来了其黄金发展期。而家用健康类产品消费群体的发展趋势正在呈现年轻化与渠道下沉特点,年轻消费者和低城市级别消费者将发展为未来此类产品的消费主力之一。网购年轻化浪潮加速到来淘宝数据显示,28岁以下年轻消费者已占淘宝总用户量一半以上,但2015年该群体创造的销售额占整个淘宝平台的四成左右,小于其人数占比,因此年轻消费群体的平均消费水平低于淘宝平台消费者的平均值。一个明显特点是,所有商品品类的购买人群均出现了不同程度的年轻化趋势,今年28岁以下消费者所占比例较2014年有所上升。总体来说,22岁至28岁的年轻群体增长逐渐趋于稳定,不同品类间差异并不明显,而年轻化的程度差异主要体现在18到22岁群体份额中,这个群体的消费者增速十分迅猛,一些年轻化较快的行业如男装和手机,份额远超主食和家具等年轻化较慢的行业。年轻化不仅体现在年轻消费群体的增长与活跃,还体现在其他消费群体消费观念的年轻化,各类被传统认为年轻人才会消费的商品,如染发产品和运动用品,在年长的群体里也逐渐流行起来。具体到吃穿住行细分领域,穿衣方面的年轻化趋势主要体现在18至22岁群体高速增长,而22岁至28岁的年轻群体自2012、2013年后保持稳定的份额;28岁至35岁群体占比下降十分明显。吃的方面,年轻化趋势程度并不如穿的如此明晰,18至22岁群体的增长速度以及份额相对较慢,22岁至28岁群体仍处于缓慢增长中,休闲食品的年轻化趋势更加显著。在玩上,年轻化趋势更多体现在年轻人对于电子产品与运动的热衷,年轻群体已经成为这两类市场上的主流消费群体并且仍处于增长趋势;运动与户外产品领域,年轻用户群体仍在快速增长,但28岁以上消费者仍是市场主体。美妆和育儿方面,受人生不同年龄阶段的影响,育儿产品年轻化趋势体现在22岁至28岁的年轻群体的高速增长,成为市场的主流消费群体之一,22岁以下消费者鲜有亮点;而美妆方面18-22岁群体成为主要增长点,22-28岁用户则趋于稳定。在购物时段偏好上,18-22岁用户以打工者与学生为主,他们喜欢在时间充裕的午饭前后购物;而22-28岁年龄段消费者较为统一地喜欢在午后时间购物,且购物时段更为集中,这可能是一天中工作相对不太繁忙的时段。在男女差异上,22-28岁男性的购物行为转移到了傍晚和夜间,尤其在21时和19时这两个下班后时段;而该年龄段女性的购物行为集中在午后。年轻化的趋势已经深入所有的商品种类中,年轻消费者群体的独特需求将深刻影响整个电子商务市场的格局。针对不同商品类别年轻化的速度不同,比如在服装、运动和科技产品等年轻消费者已经成为主流的市场中,商家需要采取更受年轻消费者欢迎的营销策略才能跟上市场脚步;而在诸如家装、食品类等年轻消费者正在增长的市场中,商家可以开发针对该群体的商品来挖掘新的增长点。

❻ 发现大数据背后的新商业法则

发现大数据背后的新商业法则熟知足球的人,大都不会忘记2006年世界杯赛场上帮助德国队守门员莱曼扑点球的那张小纸条。在1/4决赛中,德国队与阿根廷队相遇,120分钟内双方1-1战平。点球大战上演前,德国队教练组将一张写着对方球员罚点球习惯的纸条递给了莱曼。这是球队智囊长期跟踪分析的成果,正是在这一“成果”的帮助下,莱曼神奇地扑出了两粒点球,最终击败强劲对手晋级。事隔8年,回首这经典一幕,你是不是看到了大数据思维的影子?没错,美国经济学家迪克西特和奈尔伯夫曾根据大量计算得出结论:球员罚点球时会在61.7%的时间里选择自己习惯的方向,而38.3%的时间里会选择另一边。四年一届的世界杯足球赛自上月中旬在巴西重燃战火,微软、高盛、网络等公司也“粘”上了足球:他们通过对球队球员、博彩公司以及民意调查等超过亿万条数据进行分析,一致认为东道主巴西队夺冠的概率最大。在这三家公司看来,大数据最大的价值在于对海量数据的专业化处理,并预知未来。比如,微软就自称用大数据成功预测了第86届奥斯卡金像奖24个奖项中的21个,准确率高达87.5%。然而,比赛毕竟不同于颁奖,绿茵场上风云变幻,什么事都有可能发生。或许,能不能猜中并不是最重要的。在万众瞩目的世界杯足球赛期间,能为其研发的大数据平台做推广可能更有意义。财富,往往就藏在数据背后。当网络大数据平台注意到“什么时段使用化妆品”成了最热门搜索词,便将这一现象“告知”某家化妆品公司,后者随即推出了不同年龄段在不同时段使用的产品,深受市场青睐。知道谁想买什么样的化妆品不足为奇,但是,倘若知道数亿人明天或者六个月、一年之后会买什么,那就价值连城了——如何发现大数据背后的新商业法则,正是本期本刊策划《大数据掘金术》要探讨的重点。大数据时代,在市场剧变的环境下,传统产业转型升级以及渠道拓展的需求越来越大,将形成一个超万亿元的市场。这是上海通路快建公司董事长林翰作出的判断,他在全球金融危机初期创建的年轻企业,致力于为那些“遇到麻烦的企业”构建全国渠道,实现商机速配。本刊记者对此实地调查,详细解读通路快建如何做成阿里巴巴当年想做而没有做成的生意。“大数据不只是‘量’大。最根本的,还是数据体现出来的大价值。”在国内首先倡导大数据思维的信息管理专家涂子沛认为,地平线上正在出现一些新的方法,以解决一些老问题。阿里巴巴副总裁车品觉认为,大数据的本质就是要还原用户的真实需求。倘若把国家比作是提供产品的工厂,那么生活在这个国家的人就是用户。问题是,“国家工厂”是否清楚用户的真实需求?不久前,中国政府正式批复《洞庭湖生态经济区规划》。在本刊记者采写的《新江湖关系的跨省探索》组稿中,国内有关专家和湖南、湖北两地的多位官员均表示,洞庭湖规划的亮点在于,“生态”二字带来的不仅是机遇,更是一种发展模式的挑战。站在用户体验的视角,洞庭湖规划恰好从一个侧面体现了大数据思维的精髓。

❼ 《决战大数据驾驭未来商业的利器》epub下载在线阅读全文,求百度网盘云资源

《决战大数据》(车品觉)电子书网盘下载免费在线阅读

资源链接:

链接:

提取码: 2zxj

书名:决战大数据

作者:车品觉

豆瓣评分:7.3

出版社:浙江人民出版社

出版年份:2014-3-1

页数:236

内容简介:

[内容简介]

大数据时代的来临,给当今的商业带来了极大的冲击,多数电商人无不“谈大数据色变”,并呈现出一种观望、迷茫、手足无措的状态。车品觉,作为一名经验丰富的电商人,在敬畏大数据的同时,洞悉到了数据时代商业发展的更多契机,他创新了数据框架的建立和使用,重新量化了数据价值的指标,并挖掘了在无线数据和多屏时代下商业发展的本质……在他看来,改变思维方式,即可改变数据和商业的未来。

《决战大数据》将视角投入到“大数据实践”的领域,对数据收集、数据化运营、运营数据、无线数据、数据盲点和噪音、数据分类和数据价值、养数据、多屏时代等大数据应用的热点问题做出了详细的解答,对当今的大数据进行了多角度思考,并提出了做好“个人大数据管理”的前瞻性建议,创建了一个数据化运营和运营数据的闭环系统。同时,《决战大数据》首次揭开阿里巴巴运营数据的神秘面纱,解密了其数据实践的“混、通、晒”内三板斧和“存、管、用”外三板斧,对于当今的绝大多数电商企业来说十分有借鉴意义。

《决战大数据》是继经典畅销书《大数据时代》之后聚焦中国大数据实践的重磅新作。

[编辑推荐]

大数据实践的先行者、阿里巴巴集团副总裁、数据委员会会长车品觉首部个人专著:拥有十几年丰富的数据实战经验,并在实践中形成了独特的数据化思考方式,对电子商务未来趋势有独到见解,曾先后在汇丰银行、香港电讯盈科、微软、eBay等多家著名跨国公司任总监。

继《大数据时代》之后聚焦中国大数据实践的重磅之作,引领“大数据实践”风潮:《决战大数据》为数据人拨开大数据时代的层层迷雾,对数据化运营和运营数据的热点问题做了详细的解答,为现代商业的发展提供了数据应用的前瞻性建议和商业新范本。

聚焦阿里巴巴的大数据实践,首次揭开阿里巴巴运营数据的神秘面纱:解密了阿里巴巴大数据实践的“混、通、晒”内三板斧和“存、管、用”外三板斧,还原最真实的阿里巴巴。

首度提出“数据化思考”新思维,改变思维,决胜数据化未来:作者认为大数据时代更多地改变了人类的思维模式,只有掌控大数据背后真正的思维变革才是决胜未来商业的关键。

洞悉大数据与个人、商业与个人的内在联系,指出了“个人大数据管理”的重要性:无论是电商管理层,还是数据分析师,每个人都要有完善的个人大数据管理模式,以避免数据收集和使用中出现信息不对称的断层。

最接地气的大数据著作,既是商业人和电商从业者的案头必备书,也是管理层的决策宝典:作者列举了大量国内领先电商和自身经历的经典“数据分析实例”。内容深入浅出,语言通俗易懂。对当今国内的绝大多数企业来说,更有针对性、借鉴性、实操性,也更接地气。

国内8大顶尖电商和投资人强力推荐,迄今为止最有重量的数据实践之作:eBay 大中华区CEO林奕彰、唯品会创始人沈亚、红杉中国董事总经理刘星、 大众点评网CEO 张涛、安客诚全球副总裁程杰、京东集团高级副总裁徐雷、 桔子水晶酒店集团创始人吴海、LinkedIn商务分析部总监张溪梦等联袂推荐。

图书个人所得全部捐献给“桑珠助学”和雪谦寺重建。

湛庐文化出品。

作者简介:

车品觉

国内大数据实践先行者、数据观察家。现任阿里巴巴集团商业智能部副总裁、数据委员会会长。

拥有多元化与国际化的教育背景:生于香港,在美国、英国、澳洲等地接受西方教育,曾于新南威尔士大学、斯坦福大学、INSEAD商学院及清华大学经管学院等世界一流学院进修。

拥有丰富的数据实战经验与独特的数据化思维:曾先后在汇丰银行、香港电讯盈科、微软、易趣等多家著名跨国公司任总监职务。对电子商务未来趋势有独到见解,是一名未来趋势观察家和实战型培训师。

❽ 《决战大数据(升级版)大数据的关键思考》epub下载在线阅读全文,求百度网盘云资源

《决战大数据(升级版)》(车品觉)电子书网盘下载免费在线阅读

链接:

提取码: p1j4

书名:决战大数据(升级版)

作者:车品觉

豆瓣评分:7.9

出版社:浙江人民出版社

出版年份:2016-4

页数:310

内容简介:

在数据无限的时代,我们如何利用大数据实现商业大洗牌?传统行业又该如何通过挖掘隐藏在大数据背后的信息,冲出层层危机,实现行业质和量的飞跃?企业如何才能实现数据化运营,在大数据时代站稳脚跟?大数据实践的先行者、阿里巴巴集团前副总裁车品觉倾力新增8万字纯干货,倾情解读企业在大数据时代顽强生存的答案!只有稳抓趋势中的观战重点,才能在海量数据中挖掘商机!

随着智能手机的大范围普及、物联网浪潮以及人工智能技术的爆发式发展,大数据在收集消费者全渠道行为、触发商业机遇等方面发挥了越来越重要的作用。而《决战大数据》一书恰恰洞悉了大数据时代商业发展的本质。同时,车品觉根据其在阿里巴巴的多年经验,通过丰富的案例和通俗易懂的语言,从“养数据”到“用数据”,深入浅出地向我们揭开了阿里巴巴数据化运营和运营数据的神秘面纱。通过《决战大数据》一书,车品觉告诉我们,在数据无限的时代,拥有数据化思维,才能改变商业的未来。

一部全方位展现智能时代数据思维构建之道的实战巨作,数据力决定竞争力的年代,不得不读!

作者简介:

车品觉

畅销书《决战大数据》作者

红杉资本中国基金专家合伙人

全国信标委大数据标准工作组副组长

阿里巴巴集团前副总裁,首任阿里数据委员会会长;拥有十几年丰富的数据实战经验,并在实践中形成了独特的数据化思考及管理方式,对大数据未来趋势有独到的见解。亲自领导阿里数据团队在大数据实践领域取得了一系列重要成果,包括为阿里建立集团各事业群的业务及决策分析框架,开发智能化的数据产品,成立了驱动集团数据化的运营团队,成功发起了公共与专有数据资产管理体系,还发布了数据安全规范等。

现担任中国信息协会大数据分会副会长、中国计算机学会大数据专家委员会副主任、粤港信息化专家委员、中国计算数学学会第九届理事、清华大学教育指导委员(大数据项目)、浙江大学管理学院兼职教授等职。

❾ 哪位大神有《决战大数据:驾驭未来商业的利器》电子版书籍百度云盘下载

《决战大数据:驾驭未来商业的利器》网络网盘txt 最新全集下载

链接: https://pan..com/s/13BvwlHz_rggyJs3Yl4rDbw

提取码: i5cv

《决战大数据:驾驭未来商业的利器》是车品觉编写的一本书,2014年4月由浙江人民出版社出版。

❿ 什么叫大数据,与云计算有何关系。

1,大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产

2,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。

他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。

(10)车品觉大数据趋势扩展阅读:

大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。

大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。

大数据的趋势:

趋势一:数据的资源化

何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。

趋势二:与云计算的深度结合

大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

趋势三:科学理论的突破

随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

参考资料:网络-大数据网络-云数据

赞(0)