大数据总称|大数据的概念是什么

❶ 大数据的定义是什么

大数据首先是一个非常大的数据集,可以达到TB(万亿字节)甚至ZB(十万亿亿字节)。这里面的数据可能既有结构化的数据,也有半结构化和非结构化的数据,而且来自于不同的数据源。

结构化的数据是什么呢?对于接触过关系型数据库的小伙伴来说,应该一点都不陌生。对了,就是我们关系型数据库中的一张表,每行都具有相同的属性。如下面的一张表:

(子标签的次序和个数不一定完全一致)

那什么又是非结构化数据呢?这类数据没有预定义完整的数据结构,在我们日常工作生活中可能更多接触的就是这类数据,比如,图片、图像、音频、视频、办公文档等等。

知道了这三类结构的数据,我们再来看看大数据的数据源有哪些呢?归纳起来大致有五种数据源。

一是社交媒体平台。如有名气的Facebook、Twitter、YouTube和Instagram等。媒体是比较受欢迎的大数据来源之一,因为它提供了关于消费者偏好和变化趋势的宝贵依据。并且因为媒体是自我传播的,可以跨越物理和人口障碍,因此它是企业深入了解目标受众、得出模式和结论、增强决策能力的方式。

二是云平台。公有的、私有的和第三方的云平台。如今,越来越多的企业将数据转移到云上,超越了传统的数据源。云存储支持结构化和非结构化数据,并为业务提供实时信息和随需应变的依据。云计算的主要特性是灵活性和可伸缩性。由于大数据可以通过网络和服务器在公共或私有云上存储和获取,因此云是一种高效、经济的数据源。

三是Web资源。公共网络构成了广泛且易于访问的大数据,个人和公司都可以从网上或“互联网”上获得数据。此外,国内的大型购物网站,淘宝、京东、阿里巴巴,更是云集了海量的用户数据。

四是IoT(Internet of Things)物联网数据源。物联网目前正处于迅猛发展势头。有了物联网,我们不仅可以从电脑和智能手机获取数据,还可以从医疗设备、车辆流程、视频游戏、仪表、相机、家用电器等方面获取数据。这些都构成了大数据宝贵的数据来源。

五是来自于数据库的数据源。现今的企业都喜欢融合使用传统和现代数据库来获取相关的大数据。这些数据都是企业驱动业务利润的宝贵资源。常见的数据库有MS Access、DB2、Oracle、MySQL以及大数据的数据库Hbase、MongoDB等。

我们再来总结一下,什么样的数据就属于大数据呢?通常来大数据有4个特点,这就是业内人士常说的4V,volume容量、 variety多样性、velocity速度和veracity准确性。

❷ 大数据的概念是什么

❸ 什么是大数据技术大数据的概念

大数据技术是指大数据的应用技术,涵盖各类大数据平台、大数据指数体系等大数据应用技术。

大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

随着云时代的来临,大数据也吸引了越来越多的关注。分析师团队认为,大数据通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。

(3)大数据总称扩展阅读:

大数据的三个层面:

1、理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

2、技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

3、实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

参考资料来源:网络-大数据

❹ 大数据概述及基本概念

大数据的定义首先,还是要重新审视大数据的定义。

行业里对大数据的定义有很多,有广义的定义,也有狭义的定义。广义的定义,有点哲学味道——大数据,是指物理世界到数字世界的映射和提炼。通过发现其中的数据特征,从而做出提升效率的决策行为。狭义的定义,是技术工程师给的——大数据,是通过获取、存储、分析,从大容量数据中挖掘价值的一种全新的技术架构。相比较而言,我还是喜欢技术定义,哈哈。大家注意,关键词我都在上面原句加粗了哈!要做什么?——获取数据、存储数据、分析数据对谁做?——大容量数据目的是什么?——挖掘价值获取数据、存储数据、分析数据,这一系列的行为,都不算新奇。我们每天都在用电脑,每天都在干这个事。例如,每月的月初,考勤管理员会获取每个员工的考勤信息,录入Excel表格,然后存在电脑里,统计分析有多少人迟到、缺勤,然后扣TA工资。但是,同样的行为,放在大数据身上,就行不通了。换言之,传统个人电脑,传统常规软件,无力应对的数据级别,才叫“大数据”。

2.大数据,到底有多大?

我们传统的个人电脑,处理的数据,是GB/TB级别。例如,我们的硬盘,现在通常是1TB/2TB/4TB的容量。TB、GB、MB、KB的关系,大家应该都很熟悉了:1 KB = 1024 B (KB – kilobyte)1 MB = 1024 KB (MB – megabyte)1 GB = 1024 MB (GB – gigabyte)1 TB = 1024 GB (TB – terabyte)而大数据是什么级别呢?PB/EB级别。大部分人都没听过。其实也就是继续翻1024倍:1 PB = 1024 TB (PB – petabyte)1 EB = 1024 PB (EB – exabyte)只是看这几个字母的话,貌似不是很直观。我来举个例子吧。1TB,只需要一块硬盘可以存储。容量大约是20万张照片或20万首MP3音乐,或者是671部《红楼梦》小说。1PB,需要大约2个机柜的存储设备。容量大约是2亿张照片或2亿首MP3音乐。如果一个人不停地听这些音乐,可以听1900年。1EB,需要大约2000个机柜的存储设备。如果并排放这些机柜,可以连绵1.2公里那么长。如果摆放在机房里,需要21个标准篮球场那么大的机房,才能放得下。阿里、网络、腾讯这样的互联网巨头,数据量据说已经接近EB级。EB还不是最大的。目前全人类的数据量,是ZB级。1 ZB = 1024 EB (ZB – zettabyte)2011年,全球被创建和复制的数据总量是1.8ZB。而到2020年,全球电子设备存储的数据,将达到35ZB。如果建一个机房来存储这些数据,那么,这个机房的面积将比42个鸟巢体育场还大。数据量不仅大,增长还很快——每年增长50%。也就是说,每两年就会增长一倍。目前的大数据应用,还没有达到ZB级,主要集中在PB/EB级别。大数据的级别定位:1 KB = 1024 B (KB – kilobyte)1 MB = 1024 KB (MB – megabyte)1 GB = 1024 MB (GB – gigabyte)1 TB = 1024 GB (TB – terabyte)1 PB = 1024 TB (PB – petabyte)1 EB = 1024 PB (EB – exabyte)1 ZB = 1024 EB (ZB – zettabyte)

3.数据的来源

数据的增长,为什么会如此之快?说到这里,就要回顾一下人类社会数据产生的几个重要阶段。大致来说,是三个重要的阶段。第一个阶段,就是计算机被发明之后的阶段。尤其是数据库被发明之后,使得数据管理的复杂度大大降低。各行各业开始产生了数据,从而被记录在数据库中。这时的数据,以结构化数据为主(待会解释什么是“结构化数据”)。数据的产生方式,也是被动的。如果你对大数据开发感兴趣,想系统学习大数据的话,可以戳我加入大数据技术学习交流群,私信管理员即可免费领取开发工具以及入门学习资料第二个阶段,是伴随着互联网2.0时代出现的。互联网2.0的最重要标志,就是用户原创内容。随着互联网和移动通信设备的普及,人们开始使用博客、facebook、youtube这样的社交网络,从而主动产生了大量的数据。第三个阶段,是感知式系统阶段。随着物联网的发展,各种各样的感知层节点开始自动产生大量的数据,例如遍布世界各个角落的传感器、摄像头。经过了“被动-主动-自动”这三个阶段的发展,最终导致了人类数据总量的极速膨胀。

4.大数据的4Vs

行业里对大数据的特点,概括为4个V。前面所说的庞大数据体量,就是Volume(海量化)。除了Volume之外,剩下三个,分别是Variety、Velocity、Value。我们一个一个来介绍。

Variety(多样化)

数据的形式是多种多样的,包括数字(价格、交易数据、体重、人数等)、文本(邮件、网页等)、图像、音频、视频、位置信息(经纬度、海拔等),等等,都是数据。数据又分为结构化数据和非结构化数据。从名字可以看出,结构化数据,是指可以用预先定义的数据模型表述,或者,可以存入关系型数据库的数据。例如,一个班级所有人的年龄、一个超市所有商品的价格,这些都是结构化数据。而网页文章、邮件内容、图像、音频、视频等,都属于非结构话数据。在互联网领域里,非结构化数据的占比已经超过整个数据量的80%。大数据,就符合这样的特点:数据形式多样化,且非结构化数据占比高。

Velocity(时效性)

大数据还有一个特点,那就是时效性。从数据的生成到消耗,时间窗口非常小。数据的变化速率,还有处理过程,越来越快。例如变化速率,从以前的按天变化,变成现在的按秒甚至毫秒变化。我们还是用数字来说话:就在刚刚过去的这一分钟,数据世界里发生了什么?Email:2.04亿封被发出Google:200万次搜索请求被提交Youtube:2880分钟的视频被上传Facebook:69.5万条状态被更新Twitter:98000条推送被发出12306:1840张车票被卖出……怎么样?是不是瞬息万变?

Value(价值密度)

最后一个特点,就是价值密度。大数据的数据量很大,但随之带来的,就是价值密度很低,数据中真正有价值的,只是其中的很少一部分。例如通过监控视频寻找犯罪分子的相貌,也许几TB的视频文件,真正有价值的,只有几秒钟。

❺ 大数据的内容和基本含义

“大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,什么是大数据概念呢,大数据概念怎么理解呢,一起来看看吧。1、大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。2、大数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到其内在规律。3、大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。4、大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。5、大数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。例子还有很多。6、大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。

❻ 大数据的基本概念是什么

大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

❼ 大数据的定义是什么

大数据并抄不只是数据量大而已,它是数据存储+分布式调度+数据分析的结合大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产,简单来说大数据就是海量的数据,就是数据量大、来源广、种类繁多(日志、视频、音频),大到PB级别,现阶段的框架就是为了解决PB级别的数据。大数据的7大特征:海量性,多样性,高速性,可变性,真实性,复杂性,价值性随着大数据产业的发展,它逐渐从一个高端的、理论性的概念演变为具体的、实用的理念。很多情况下大数据来源于生活。比如你点外卖,准备什么时候买,你的位置在哪,商家位置在哪,想吃什么……这都是数据,人一多各种各样的信息就越多,还不断增长,把这些信息集中,就是大数据。大数据的价值并不是在这些数据上,而是在于隐藏在数据背后的——用户的喜好、习惯还有信息。

赞(0)