『壹』 大数据时代需要学习什么技术
大数据时代需要学习数据的存储和处理技术。大数据的存储主要是一些分布式内文件系统,现在有容好些分布式文件系统。比较火的就是GFS,HDFS前者是谷歌的内部使用的,后者是根据谷歌的相关论文用java开发的来源框架。hdfs可以学习。然后就是数据处理是学maprece,这是大数据出的不错的实现,可以基于hdfs实现大数据处理和优化存储。还有一个比较好的列式存储的数据库hbase,也是为了大数据儿生的非关系型数据库。然后就是一些辅助工具框架,比如:hive,pig,zookeeper,sqoop,flum。
『贰』 大数据发展必备三个条件
大数据发展必备三个条件大数据概念的横空出世,有赖于短短几年出现的海量数据。据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。当然,海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”的特征,大数据的定义才算完整,而价值恰恰是决定大数据未来走向的关键。大数据发展必备三个条件大数据的发展需要三个必要条件:数据源、数据交易、数据产生价值的过程。近年来,社交网络的兴起、物联网的发展和移动互联网的普及,诞生了大量有价值的数据源,奠定了大数据发展的基础。大数据时代到来的重要标志,则是大批专业级“数据买卖商”的出现,以及围绕数据交易形成的,贯穿于收集、整理、分析、应用整个流程的产业链条。大数据发展的核心,则是使用户从海量的非结构化数据和半结构化数据中获得了新的价值,数据价值是带动数据交易的原动力。IBM、甲骨文、SAP近年纷纷斥巨资收购数据管理和分析公司,在这些互联网巨头的带动下,数据分析技术日渐成熟。2013年6月,爱德华·斯诺登将“棱镜计划”公之于众,“棱镜门”事件一方面说明大数据技术已经成熟;另一方面也佐证了现在阻碍大数据发展的不是技术,而是数据交易和数据价值。大数据技术的发展促进了云计算的落地,云计算的部署完成又反过来加大了市场对数据创造价值的期待。大数据概念提出之后,市场终于看到了云计算的获利方向:各地的一级系统集成商与当地政府合作,建云数据中心;各大行业巨头在搭建各自行业的云平台;IT巨头想尽办法申请中国的公有云牌照。大数据促成了云计算从概念到落地。借助于智慧城市概念的普及,云计算基础设施已基本准备就绪,一方面完成了大数据应用的硬件基础;另一方面迫于回收云计算投资的压力,市场急需应用部署,大数据恰如雪中送炭,被市场寄予厚望。现在,问题的核心指向了“数据如何创造价值?”整合与开放是基石大数据服务创业公司Connotate对800多名商业和IT主管进行了调查。结果显示,60%受调查者称:“目前就说这些大数据投资项目肯定能够带来良好回报尚为时过早。”之所以如此,是由于当前大数据缺乏必需的开放性:数据掌握在不同的部门和企业手中,而这些部门和企业并不愿意分享数据。大数据是通过研究数据的相关性来发现客观规律,这依赖于数据的真实性和广泛性,数据如何做到共享和开放,这是当前大数据发展的软肋和需要解决的大问题。2012年美国大选,奥巴马因数据整合而受益。在奥巴马的竞选团队中有一个神秘的数据挖掘团队,他们通过对海量数据进行挖掘帮助奥巴马筹集到10亿美元资金;他们通过数据挖掘使竞选广告投放效率提升了14%;他们通过制作“摇摆州”选民的详细模型,每晚实施6.6万次模拟选举,推算奥巴马在“摇摆州”的胜率,并以此来指导资源分配。奥巴马竞选团队相比罗姆尼竞选团队最有优势的地方:对大数据的整合。奥巴马的数据挖掘团队也意识到这个全世界共同的问题:数据分散在过多的数据库中。因此,在前18个月,奥巴马竞选团队就创建了一个单一的庞大数据系统,可以将来自民意调查者、捐资者、现场工作人员、消费者数据库、社交媒体,以及“摇摆州”主要的民主党投票人的信息整合在一起,不仅能告诉竞选团队如何发现选民并获得他们的注意,还帮助数据处理团队预测哪些类型的人有可能被某种特定的事情所说服。正如竞选总指挥吉姆·梅西纳所说,在整个竞选活中,没有数据做支撑的假设很少存在。2012年3月,美国奥巴马政府宣布投资2亿美元启动“大数据研究和发展计划”,将“大数据研究”上升为国家意志。一个国家拥有数据的规模和运用数据的能力将成为综合国力的重要组成部分。国内智慧城市建设目标之一就是实现数据的集中共享。合作共赢的商业模式随着云计算、大数据技术和相关商业环境的不断成熟,越来越多的“软件开发者”正在利用跨行业的大数据平台,打造创新价值的大数据应用,而且这一门槛正在不断降低。因为首先,数据拥有者能够以微乎其微的成本获取额外的收入,提高利润水平;其次,大数据设备厂商需要应用来吸引消费者购买设备,发展合作共赢的伙伴关系势必比单纯销售设备要有利可图,一些具有远见的厂商已经开始通过提供资金、技术支持、入股等方式来扶持这些“软件开发者”;第三,行业细分市场的数据分析应用需求在不断加大,对于整个大数据产业链来说,创新型的行业数据应用开发者必将是未来整个大数据产业链中最为活跃的部分。未来,有三种企业将在”大数据产业链“中处于重要地位:掌握海量有效数据的企业,有着强大数据分析能力的企业,以及创新的“软件开发者”。社交网络、移动互联网、信息化企业、电信运营商都是海量数据的制造者,Facebook公司手中掌握着8.5亿用户,淘宝注册用户超过3.7亿,腾讯的微信用户突破3亿,这些庞大用户群所提供的数据,正在等待时机释放出巨大商业能量。可以预测,在不久的将来,Facebook、腾讯、电信运营商等海量数据持有者或者自我延伸成为数据分析提供商,或者与IBM、ZTE等企业密切对接成为上下游合作企业,大数据产业链将在某个爆发时点到来之际,以令人惊讶的速度成长壮大。警惕大数据的危害大数据时代,传统的随机抽样被“所有数据的汇拢”所取代,人们的思维决断模式,已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此将更精确、更有预见性。不过,由于大数据过于依靠数据的汇集,一旦数据本身有问题,就很可能出现“灾难性大数据”,即因为数据本身的问题,而导致错误的预测和决策。大数据的理论是“在稻草堆里找一根针”,而如果“所有稻草看上去都挺像那根针”呢?过多但无法辨析真伪和价值的信息和过少的信息一样,对于需要作出瞬间判断、一旦判断出错就很可能造成严重后果的情况而言,同样是一种危害。“大数据”理论是建立在“海量数据都是事实”的基础上,而如果数据提供者造假呢?这在大数据时代变得更有害,因为人们无法控制数据提供者和搜集者本人的偏见。拥有最完善数据库、最先接受“大数据”理念的华尔街投行和欧美大评级机构,却每每在重大问题上判断出错,这本身就揭示了“大数据”的局限性。不仅如此,大数据时代造就了一个数据库无所不在的世界,数据监管部门面临前所未有的压力和责任:如何避免数据泄露对国家利益、公众利益、个人隐私造成伤害?如何避免信息不对等,对困难群体的利益构成伤害?在有效控制风险之前,也许还是让“大数据”继续待在笼子里更好一些。大数据的经济价值已经被人们认可,大数据的技术也已经逐渐成熟,一旦完成数据的整合和监管,大数据爆发的时代即将到来。我们现在要做的,就是选好自己的方向,为迎接大数据的到来,提前做好准备。
『叁』 大数据发展的三个必要条件
大数据发展的三个必要条件_数据分析师考试
近年来,关于大数据的讨论在技术、应用和模式等多个层面展开,已被认为代表着产业发展的方向。但与互联网公司的诸多实践相比,被认为具有数据资源先天优势的电信运营商却走在了后面,即便放眼全球,电信运营商的大数据应用案例也是屈指可数。移动宽带和固网宽带快速发展、OTT的强势崛起决定了电信运营商必须充分利用自身掌握的数据资源,另辟蹊径,从而实现网络价值的最大化。因此,电信运营商应用大数据是必然的,而且市场前景十分广阔。
为了加快大数据的“落地”步伐,帮助业界各方特别是电信运营企业更好地了解大数据,认清大数据战略发展的重要性,分析发展道路上面临的难题和障碍,促进大数据产业链的成熟,推动大数据的应用推广。从今天开始,《人民邮电》报特邀来自中兴通讯、电信研究院以及三大运营商等单位的专家,推出“掘金大数据”系列报道,以飨读者。
大数据概念的横空出世,有赖于短短几年出现的海量数据。据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。当然,海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”的特征,也就是Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值),大数据的定义才算完整,而最后一个Value(价值),恰恰是决定大数据未来走向的关键。
大数据发展的三个必要条件
大数据的发展需要三方面的必要条件:数据源、数据交易、数据产生价值的过程。近年来,社交网络的兴起、物联网的发展和移动互联网的普及,微信、微博、智能手机、电商大行其道,诞生了大量有价值的数据源,比如位置、生活信息等数据,数据源的出现奠定了大数据发展的基础。大数据时代到来的重要标志,则是大批专业级“数据买卖商”的出现,以及围绕数据交易形成的贯穿于收集、整理、分析、应用整个流程的产业链条。大数据发展的核心,则是使用户从海量的非结构化数据和半结构化数据中获得新的价值,数据价值是带动数据交易的原动力。
IBM、甲骨文、SAP近年纷纷斥巨资收购数据管理和分析公司,在这些互联网巨头的带动下,数据分析技术日渐成熟。2013年6月,爱德华·斯诺登将“棱镜”计划公之于众,“棱镜门”事件一方面说明大数据技术已经成熟,另一方面也佐证了现在阻碍大数据发展的不是技术,而是数据交易和数据价值。
大数据技术的发展促进了云计算的落地,云计算的部署完成又反过来加大了市场对数据创造价值的期待。大数据概念提出之后,市场终于看到了云计算的获利方向,云计算市场仿佛在一夜之间爆发,在过去一两年间几乎已经被国内大方案商、大集成商瓜分殆尽——各地的一级系统集成商与当地政府合作,建云数据中心,建智慧城市;各大行业的巨头们在搭建各自行业的混合云标准,搭建行业云平台;公有云也来了,各大IT巨头想尽办法申请中国的公有云牌照。云计算从概念到落地用了5年时间,最终促成这一切的就是大数据,或者说是市场对数据价值的期待。借助于国内智慧城市概念的大规模普及,云计算基础设施已基本准备就绪,一方面具备了大数据应用的硬件基础,另一方面迫于回收云计算投资的压力,市场急需应用部署,大数据恰如雪中送炭,被市场寄予厚望。
现在,一切的矛头都指向了“数据如何创造价值?”
56数据创造价值的基石6是数据整合和开放
大数据服务创业公司Connotate对800多名商业和IT主管进行了调查。结果显示,60%受调查者称“目前就说这些大数据投资项目肯定能够带来良好回报尚为时过早”。之所以如此,是由于当前大数据缺乏必需的开放性:数据掌握在不同的部门和企业手中,而这些部门和企业并不愿意分享数据。大数据通过研究数据的相关性来发现客观规律,这依赖于数据的真实性和广泛性,数据如何做到共享和开放,这是当前大数据发展的软肋和需要解决的大问题。
2012年美国大选奥巴马因数据整合而受益。在奥巴马的竞选团队中有一个神秘的数据挖掘团队,他们通过对海量数据进行挖掘帮助奥巴马筹集到10亿美元资金;他们通过数据挖掘使竞选广告投放效率提升了14%;他们通过制作摇摆州选民的详细模型,每晚实施6.6万次模拟选举,推算奥巴马在摇摆州的胜率,并以此来指导资源分配。这个数据挖掘团队,对奥巴马成功连任功不可没。奥巴马竞选团队相比罗姆尼竞选团队最有优势的地方就是对大数据的整合。奥巴马的数据挖掘团队也意识到这个全世界共同的问题:数据分散在过多的数据库中。因此,在前18个月,奥巴马竞选团队就创建了一个单一的庞大数据系统,可以将来自民意调查者、捐资者、现场工作人员、消费者数据库、社交媒体,以及“摇摆州”主要的民主党投票人的信息整合在一起。这个整合后的巨大数据库不仅能告诉竞选团队如何发现选民并获得他们的注意,还帮助数据处理团队预测哪些类型的人有可能被某种特定的事情所说服。正如竞选总指挥吉姆·梅西纳所说,在整个竞选活中,没有数据做支撑的假设很少存在。
2012年3月,美国奥巴马政府宣布投资2亿美元启动“大数据研究和发展计划”,将大数据研究上升为国家意志,对大数据的整合带来深远影响。一个国家拥有数据的规模和运用数据的能力将成为综合国力的重要组成部分。国内智慧城市的建设目标之一就是实现数据的集中共享。
数据创造价值需要合作共赢的商业模式
随着云计算、大数据技术和相关商业环境的不断成熟,越来越多的“软件开发者”正在利用跨行业的大数据平台,打造创新价值的大数据应用,而且这一门槛正在不断降低。因为首先,数据拥有者乐于做这样的事情,他们能够以微乎其微的成本获取额外的收入,提高利润水平;其次,大数据设备厂商乐于做这样的事情,因为厂商需要应用来吸引消费者购买设备,发展合作共赢的伙伴关系势必比单纯销售设备要有利可图,一些具有远见的厂商已经开始通过提供资金、技术支持、入股等方式来扶持这些“软件开发者”;第三,行业细分市场的数据分析应用需求在不断加大,对于整个大数据产业链来说,创新型的行业数据应用开发者必将是未来整个大数据产业链中最为活跃的部分。
在必然到来的大数据时代,有三种企业将在“大数据产业链”中处于重要地位:掌握海量有效数据的企业,有着强大数据分析能力的企业,以及创新的“软件开发者”。社交网络、移动互联网、信息化企业、电信运营商都是海量数据的制造者,Facebook公司手中掌握着8.5亿用户,淘宝注册用户超过3.7亿,腾讯的微信用户突破3亿,这些庞大用户群所提供的数据,正在等待时机释放出巨大的商业能量。可以预测,在不久的将来,Facebook、腾讯、电信运营商等海量数据持有者要么自我发展成为数据分析提供商,要么与IBM、ZTE等企业密切对接成为上下游合作企业,大数据产业链将在某个爆发点到来之际,以令人惊讶的速度成长壮大。
警惕大数据的危害
大数据时代,传统的随机抽样被“所有数据的汇拢”所取代,人们的思维决断模式,已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此将更精确、更有预见性。不过,由于大数据过于依靠数据的汇集,一旦数据本身有问题,就很可能出现“灾难性大数据”,即因为数据本身的问题,而导致错误的预测和决策。
大数据的理论是“在稻草堆里找一根针”,而如果“所有稻草看上去都挺像那根针”呢?过多但无法辨析真伪和价值的信息和过少的信息一样,对于需要作出瞬间判断、一旦判断出错就很可能造成严重后果的情况而言,同样是一种危害。大数据理论是建立在“海量数据都是事实”的基础上,而如果数据提供者造假呢?这在大数据时代变得更有害,因为,人们无法控制数据提供者和搜集者本人的偏见与过滤。拥有最完善数据库、最先接受“大数据”理念的华尔街投行和欧美大评级机构,却每每在重大问题上判断出错,这本身就揭示了“大数据”的局限性。
不仅如此,大数据时代造就了一个数据库无所不在的世界,数据监管部门面临前所未有的压力和责任:如何避免数据泄露对国家利益、公众利益、个人隐私造成伤害?如何避免信息不对等,对弱势群体的利益构成伤害?在有效控制风险之前,也许还是让大数据继续待在“笼子”里更好一些。
大数据的经济价值已经被人们所认可,大数据的技术也已经逐渐成熟,一旦完成数据的整合和监管,大数据爆发的时代即将到来。我们现在要做的,就是选好自己的方向,为迎接大数据的到来,提前做好准备。
以上是小编为大家分享的关于大数据发展的三个必要条件的相关内容,更多信息可以关注环球青藤分享更多干货
『肆』 大数据时代有哪些主要特点
大数据有4个特点,为别为:Volume(大量)、Variety(多样)、Velocity(高速)、Value(价值),一般我们称之为4V。
1.大量。大数据的特征首先就体现为“大”,从先Map3时代,一个小小的MB级别的Map3就可以满足很多人的需求,然而随着时间的推移,存储单位从过去的GB到TB,乃至现在的PB、EB级别。
随着信息技术的高速发展,数据开始爆发性增长。社交网络(微博、推特、脸书)、移动网络、各种智能工具,服务工具等,都成为数据的来源。淘宝网近4亿的会员每天产生的商品交易数据约20TB;脸书约10亿的用户每天产生的日志数据超过300TB。
迫切需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。
2.多样。广泛的数据来源,决定了大数据形式的多样性。任何形式的数据都可以产生作用,目前应用最广泛的就是推荐系统,如淘宝,网易云音乐、今日头条等,这些平台都会通过对用户的日志数据进行分析,从而进一步推荐用户喜欢的东西。
日志数据是结构化明显的数据,还有一些数据结构化不明显,例如图片、音频、视频等,这些数据因果关系弱,就需要人工对其进行标注。
3.高速。大数据的产生非常迅速,主要通过互联网传输。生活中每个人都离不开互联网,也就是说每天个人每天都在向大数据提供大量的资料。
并且这些数据是需要及时处理的,因为花费大量资本去存储作用较小的历史数据是非常不划算的,对于一个平台而言,也许保存的数据只有过去几天或者一个月之内,再远的数据就要及时清理,不然代价太大。
基于这种情况,大数据对处理速度有非常严格的要求,服务器中大量的资源都用于处理和计算数据,很多平台都需要做到实时分析。数据无时无刻不在产生,谁的速度更快,谁就有优势。
4.价值。这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。
相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析。
发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果。
『伍』 GIS中,空间数据共享的意义和方法
意义:GIS基础软件技术是地理信息领域软件技术的制高点,是整个产业链条的关键。发展GIS基础软件对我国地理信息产业发展和保证国家地理信息安全至关重要。
方法:大数据与GIS的结合正在改变传统地理研究与分析方法,也在悄然改变GIS的服务形态。IT新技术的融入,不断丰富和提升地理智慧的内核。而爆发式增长的市场需求,又为GIS技术的创新和应用发展提供了新的动力。
(5)大数据时代对测绘的要求扩展阅读
超图集团正式对外发布了基于大数据架构的GIS基础软件产品SuperMap GIS 9D,其在大数据GIS技术、新一代三维GIS技术、云端一体化GIS技术、跨平台GIS技术四大方面取得了全新进展和突破,
满足大数据应用、新型智慧城市和新型测绘等应用需求,解决了海量时空数据分布式管理、高性能、高可信分布式计算的新难题,以及传统GIS复杂图示制图与空间分析的老问题,开创了GIS与大数据等技术融合发展和创新应用的新格局。
此次会议围绕大数据领域的探索实践、GIS与空间大数据融合、大数据时代的地理信息应用转型升级、新一代三维GIS技术创新与应用、中国GIS的国际化探索等话题,测绘地信主管部门,阿里、腾讯等互联网企业,
超图等GIS基础软件企业,相关科研机构,众多海内外GIS用户单位的相关专家在主题大会环节呈现了数十场精彩报告,共同探讨大数据时代的GIS技术创新发展与应用落地。
『陆』 大数据时代什么最重要
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。 物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式 著云台例子包括网络日志,RFID,传感器网络,社会网络,社会数据(由于数据革命的社会),互联网文本和文件;互联网搜索索引;呼叫详细记录,天文学,大气科学,基因组学,生物地球化学,生物,和其他复杂和/或跨学科的科研,军事侦察,医疗记录;摄影档案馆视频档案;和大规模的电子商务。大的数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。一些但不是所有的MPP的关系数据库的PB的数据存储和管理的能力。隐含的负载,监控,备份和优化大型数据表的使用在RDBMS的。斯隆数字巡天收集在其最初的几个星期,比在天文学的历史,早在2000年的整个数据收集更多的数据。自那时以来,它已经积累了140兆兆 字节的信息。这个望远镜的继任者,大天气巡天望远镜,将于2016年在网上和将获得的数据,每5天沃尔玛处理超过100万客户的交易每隔一小时,反过来进口量数据库估计超过2.5 PB的是相当于167次,在美国国会图书馆的书籍 。FACEBOOK处理400亿张照片,从它的用户群。解码最初的人类基因组花了10年来处理时,现在可以在一个星期内实现。“大数据”的影响,增加了对信息管理专家的需求,甲骨文,IBM,微软和SAP花了超过15亿美元的在软件智能数据管理和分析的专业公司。这个行业自身价值超过1000亿美元,增长近10%,每年两次,这大概是作为一个整体的软件业务的快速。 大数据已经出现,因为我们生活在一个社会中有更多的东西。有46亿全球移动电话用户有1亿美元和20亿人访问互联网。基本上,人们比以往任何时候都与数据或信息交互。 1990年至2005年,全球超过1亿人进入中产阶级,这意味着越来越多的人,谁收益的这笔钱将成为反过来导致更多的识字信息的增长。思科公司预计,到2013年,在互联网上流动的交通量将达到每年667艾字节。最早提出“大数据”时代已经到来的机构是全球知名咨询公司麦肯锡。麦肯锡在研究报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。“麦肯锡的报告发布后,大数据迅速成为了计算机行业争相传诵的热门概念,也引起了金融界的高度关注。”随着互联网技术的不断发展,数据本身是资产,这一点在业界已经形成共识。“如果说云计算为数据资产提供了保管、访问的场所和渠道,那么如何盘活数据资产,使其为国家治理、企业决策乃至个人生活服务,则是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。”事实上,全球互联网巨头都已意识到了“大数据”时代,数据的重要意义。包括EMC、惠普(微博)、IBM、微软(微博)在内的全球IT 巨头纷纷通过收购“大数据”相关厂商来实现技术整合,亦可见其对“大数据”的重视。“大数据”作为一个较新的概念,目前尚未直接以专有名词被我国政府提出来给予政策支持。不过,在12月8日工信部发布的物联网“十二五”规划上,把信息处理技术作为4项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。而另外3项关键技术创新工程,包括信息感知技术、信息传输技术、信息安全技术,也都与“大数据”密切相关。
『柒』 大数据的特性
1、数据类型繁多:对数据的处理能力提出了更高的要求,例如网络日志、音频、视频、图片、地理位置信息等等多类型的数据。2、处理速度快和时效性要求高:是区分于传统的数据挖掘,也这是大数据最显著的特征。3、数据价值密度相对较低:随着物联网的广泛应用,无处不在的信息感知和信息海量,但是价值密度却较低。大数据时代亟待解决的难题是:如何通过强大的机器算法可以更迅速地完成数据的价值“提纯”。二、大数据的四大特点1、海量性:有IDC 最近的报告预测称,在2020 年,将会扩大50 倍的全球数据量。现在来看,大数据的规模一直是一个不断变化的指标,单一数据集的规模范围可以从几十TB到数PB不等。也就是说,存储1 PB数据是需要两万台配备50GB硬盘的个人电脑。而且,很多你意想不到的来源都能产生数据。2、高速性:指数据被创建和移动的速度。在高速网络时代,创建实时数据流成为了流行趋势,主要是通过基于实现软件性能优化的高速电脑处理器和服务器。企业一般需了解怎么快速创建数据,还需知道怎么快速处理、分析并返回给用户,来满足他们的一些需求。3、多样性:由于新型多结构数据,导致数据多样性的增加。还包括网络日志、社交媒体、手机通话记录、互联网搜索及传感器网络等数据类型造成。4、易变性:大数据会呈现出多变的形式和类型,是由于大数据具有多层结构,相比传统的业务数据,大数据有不规则和模糊不清的特性,导致很难甚至不能使用传统的应用软件来分析。随时间演变传统业务数据已拥有标准的格式,能够被标准的商务智能软件识别。现在来看,要处理并从各种形式呈现的复杂数据中挖掘价值,成为了企业面临的挑战。
『捌』 大数据时代测绘地理信息如何发展
地理信息产业发展趋势向好 “互联网+测绘”将成行业新常态
地理信息产业,是以现代测绘技术、信息技术、计算机技术、通讯技术和网络技术相结合而发展起来的综合性产业。既包括 GIS(地理信息系统)产业、卫星定位与导航产业、航空航天遥感产业,也包括传统测绘产业和地理信息系统的专业应用,还包括LBS(基于位置服务)、地理信息服务和各类相关技术及其应用。
随着网络技术的不断发展,云计算大数据移动互联网的普及,地理信息软件也应推动地理信息获取、处理、管理和网络化分发服务软件产品的集成,重点发展基于下一代互联网、移动互联网等,适应云计算技术、时空技术、三维技术等的地理信息系统软件产品。
地理信息产业总产值
根据前瞻产业研究院发布的《地理信息产业发展前景与投资战略规划分析报告》数据显示,截至2013年底,行业内企业达2万多家,从业人员超过40万人,年产值近2,600亿元。新应用、新服务不断产生,互联网搜索和电子商务提供商、通信服务提供商、汽车厂商等纷纷涉足地理信息应用领域,形成了遥感应用、导航定位和位置服务等产业增长点。
到2020年,政策法规体系基本建立,结构优化、布局合理、特色鲜明、竞争有序的产业发展格局初步形成,互联网搜索和电子商务提供商、通信服务提供商、汽车厂商等纷纷涉足地理信息应用领域,新应用、新服务不断产生,形成遥感应用、导航定位和位置服务等产业增长点。2016 年4360亿人民币,年均复合增长率为20%,到2020年地理信息产业的总产值规模将达到9040.90亿人民币,未来10年,地理信息产业总产值将保持稳定高速的年均增长率,到2021年形成万亿元的年产值。
地理信息服务业服务总值持续快速增长,2020年将达1,736亿元
地理信息服务业是地理信息产业的核心部分,近年来,随着“一带一路”等国家战略的提出,不动产统一登记等一系列国家重大项目和重点工作的启动,国家现代测绘基准体系基础设施建设的推进,基础地理信息数据更新速度的加快,数字城市及智慧城市应用范围的不断扩大,地理信息服务总值持续快速增长。
同时,随着地理信息的不断发展,新应用、新服务不断产生,互联网搜索和电子商务提供商、通信服务提供商、汽车厂商等纷纷涉足地理信息应用领域,形成了遥感应用、导航定位和位置服务等产业增长点。参与主体的多样化结合商业模式的创新,地理信息产业正逐步走向应用多元化、深度化的时代,企业的核心竞争力不断提高。
阿里巴巴、腾讯、网络等大型互联网企业积极进军地理信息产业,给传统的中小地理信息企业带来了不小的竞争压力,导致了企业竞争的加剧,但同时也为加快产业提质增效和地理信息企业转型升级提供了强大外力。今后,产业的发展应是“互联网+ ”驱动下的有质量、有效益的创新发展。
地理信息服务业未来发展趋势
产业链将进一步延伸
在大数据时代,基于物联网、云计算、互联网技术发展的大数据技术将对地理信息服务业产业链的各个环节产生全方位的影响,引起地理信息服务业产业链结构的调整。
产业链结构的调整主要表现为产业链变长的趋势。在大数据时代,地理大数据分析与挖掘可以直接创造价值,为用户提供服务。而地理大数据分析与挖掘需要掌握专门的技术,可能还需要一定的行业背景,因此很可能发展成为一个独立增值的产业链环节。此外,地理数据与其他大数据的集成,地理大数据的存储、管理与运营都需要专门的设备和技术,在大数据时代,也很有可能发展成为一个独立的产业链环节。
“互联网+测绘”将成行业新常态
近年来,随着互联网时代的深刻变革,云计算、大数据、物联网等智能化技术的发展对测绘科学不断渗透,地理信息服务业的产业结构、产品内容及服务范围发生了重大变化,“互联网+测绘”将成为地理信息服务业新常态。
行业内企业向综合性和个性化方向发展
在大数据时代,以需求为导向的地理信息服务企业主要向两个方向发展。一是综合性,即地理信息服务企业提供的服务从单一内容的服务向多类型服务发展,从满足单一需求向提供整体解决方案发展,从提供某一种产业活动向提供多种产业活动发展。地理信息服务企业的综合化发展趋势同时也顺应和体现了地理信息技术的发展趋势。
近年来,3S技术趋于融合发展,地理信息服务领域的内外业一体化、软硬件一体化也更加明显,同时,云计算、物联网、大数据等技术的发展,也使地理信息服务企业提供应用整体解决方案服务成为可能。二是个性化,在大数据时代,利用大数据发现需求、挖掘各类信息、解决各类问题的需求将迅速增长,公众用户的个性化产品发展空间广阔。
『玖』 大数据分析与大数据开发是什么
.大数据分析比较侧重于在千万复杂的数据当中提取精华,也就是提取本身平台或需求指定相关的数据。2.大数据开发可以理解为数据的采集和数据的获得