大数据站点|如何优化大数据大流量的网站

⑴ 本人想自学大数据技术,求助一个可以免费学习的资源站点

自学大数据的方法分两类:1.看视频:时间长,要有耐性,估计全看完要1个半月,基本可内以学全开发容用的东西,但是对内在原理了解如何还要看你的理解能力。可以在扣丁学堂在线视频学习。2.看网上资料,看书:速度因人而已,领悟力强的半个月就能搞定,学的东西还比看视频多,毕竟学到这阶段都有点基础了,可以研究下程度更深的东西,如果自觉不够聪明就别勉强了,说不定3个月还云里雾里。

⑵ 大数据分析工具有哪些

大数据分析工具有:

1、Hadoop:它是最流行的数据仓库,可以轻松存储大量数据。

2、MongoDB:它是领先的数据库软件,可以快速有效地分析数据。

3、Spark: 最可靠的实时数据处理软件,可以有效地实时处理大量数据。

4、Cassandra:最强大的数据库,可以完美地处理数据块

5、Python:一流的编程语言,可轻松执行几乎所有大数据分析操作。

不同类型的大数据分析是:

1、描述性分析:它将过去的数据汇总成人们易于阅读和理解的形式。使用此分析创建与公司收入、销售额、利润等相关的报告非常容易。除此之外,它在社交媒体指标方面也非常有益。

2、诊断分析:它首先处理确定发生问题的原因。它使用了各种技术,例如数据挖掘、机器学习等。诊断分析提供对特定问题的深入洞察。

3、预测分析:这种分析用于对未来进行预测。它通过使用数据挖掘、机器学习、数据分析等各种大数据技术来使用历史数据和当前数据。这些分析产生的数据用于不同行业的不同目的。

4、规范分析:当想要针对特定问题制定规定的解决方案时,会使用这些分析。它适用于描述性和预测性分析,以获得最准确的结果。除此之外,它还使用人工智能和机器学习来获得最佳结果。

⑶ 如何优化大数据,大流量的网站

我的经验是,大量的相关文章+合理的站内链接+稳定的更新频率。如何做好seo优化策略可参考如下方法: 在搜索引擎优化中,SEO策略影响到最终的优化效果。SEO策略不管对中小网站还是大型网站都是重要的,而对于大型网站,制定一个好的SEO策略尤为重要。第一部分:关键词分析关键词分析是所有SEO必须掌握的一门功课,大型网站虽然有海量的数据,但是每个页面都需要进行关键词分析,除了SEO之外,策划、编辑也需要具备一定的关键词分析能力。关键词分析的基本原则:1、 调查用户的搜索习惯:这是一个重要的方面,只有了解用户的搜索习惯,才能把我用户的搜索需求,用户喜欢搜索什么?用什么搜索引擎?等等2、 关键词不能过于宽泛:关键词过于宽泛会导致竞争激烈,耗费大量时间却不一定得到想要的效果,并且可能降低了关键词的相关性。3、 关键词不能过冷:想想,没有用户搜索的关键词,还值得去优化吗?4、 关键词要与页面内容保持高度的相关性:这样既有利于优化又有利于用户。关键词挑选的步骤:1、 确定核心关键词:我们应该考虑的是哪一个词或者两个词能够最准确的描述网页的内容?哪一个词用户搜索次数最多?2、 核心关键词定义上的扩展:例如核心关键词的别名、仅次于核心关键词的组合等、核心关键词的辅助等。3、 模拟用户思维设计关键词:把自己假想为用户,那么我会去搜索什么关键词呢?4、 研究竞争者的关键词:分析一下排名占有优势的竞争对手的网页,他们都使用了什么关键词?第二部分:页面逆向优化为什么要做逆向优化?因为在大型网站中,页面的优化价值一般不同于中小网站。考虑到各种综合因素(例如品牌、页面内容、用户体验等),大型网站的页面优化价值大多数呈现逆向顺序,即:最终页>专题页>栏目页>频道页>首页。如何针对各页面进行关键词分配呢?通常情况是这样的:1、 最终页:针对长尾关键词;2、 专题页:针对热门关键词,例如"周杰伦";3、 栏目页:针对固定关键词,例如"音乐试听";4、 频道页:针对核心关键词,例如 "音乐";5、 首页:不分配关键词,而是以品牌为主。在进行关键词分配后,我们可以在最终页中添加匹配的内链作为辅助,这是大型网站内链的优势。第三部分:前端搜索引擎友好,包括UI设计的搜索友好和前端代码的搜索友好两点1、首先来看UI设计的搜索引擎友好:主要是做到导航清晰,以及flash和图片等的使用,一般来说,导航以及带有关键词的部分不适合使用flash及图片,因为大多数搜索引擎无法抓取flash及图片中的文字。2、然后是前端代码的搜索引擎友好:a、代码的简洁性:搜索引擎喜欢简洁的html代码,这样更有利于分析。b、重要信息靠前:指带关键词的及经常更新的信息尽量选择出现在html的靠前位置。c、过滤干扰信息:大型网站的页面一般比较复杂,各种广告、合作、交换内容以及其他没有相关性的信息比较多,我们应该选择使用js、iframe等搜索引擎无法识别的代码过滤掉这一部分信息。d、代码的基础SEO:这是基础的SEO工作,避免html错误以及语义化标签。第四部分:内部链接策略为什么要强调内部链接策略?因为内链具有以下优势:1、 大型网站海量的数据使内链的优势远远大于外链。外链的数量可能几千几万几十万,但是大型网站拥有成百万上千万甚至上亿的海量网页内容,如果用这些海量的网页做内链的建设,优势是很明显的。2、 网站内的网页间导出链接是一件很容易的事情。3、 提高搜索引擎对网站的爬行索引效率,增强收录,也有利于PR的传递。4、 集中主题,使该主题的关键词在搜索引擎中具有排名优势。在内链建设中,应该遵循以下原则:1、控制文章内链数量:穿插于文章内的链接可以根据内容的多少控制在3-8个左右。2、链接对象的相关性要高。3、给重要的网页更多的关注:使重要的更有关键词价值的网页得到更好的排名。4、使用绝对路径。第五部分:外部链接策略在强调大型网站的内链建设的同时也不能太忽视了外链的建设。外链的建设虽然没有中小网站那么重要,但是也具有很高的价值。通常可以通过交换链接、制造链接诱饵、投放带链接的软文等方法来建设外链。1、 来看交换链接应该要遵循哪些原则:a、链接文字中包含关键词;b、尽量与相关性高的站点、频道交换链接;c、对方网站导出链接数量不能过多,过多的话没有太大的价值;d、避免与未被收录以及被搜索引擎惩罚的网站交换链接2、 制造链接诱饵:制造链接诱饵是一件省力的工作,这使得对方网站主动的为我们添加链接。制造链接诱饵的技巧很多,但是可以用两个字来概括:创意。3、 带链接的软文投放。指的是在商务推广或者为专门为了得到外链而进行的带链接的软文投放。第六部分:网站地图策略有很多大型网站不重视网站地图的建设,不少大型网站的网站地图只是敷衍了事,做一个摆设。其实网站对于大型网站是很重要的,大型网站海量的数据、复杂的网站导航结构、极快的更新频率使得搜索引擎并不能完全抓取所有的网页。这就是为什么有的大型网站拥有百万千万甚至上亿级的数据量,但是却只被搜索引擎收录了网站数据量的一半、三分之一甚至更少的一个重要原因。连收录都保证不了,怎么去做排名?Html地图:1、 为搜索引擎建立一个良好的导航结构。2、 Html地图中可以分为横向和纵向导航,横向导航主要是频道、栏目、专题等链接,纵向导航主要是针对关键词。3、 每个页面都有指向网站地图的链接。Xml网站地图:主要针对Google、yahoo、live等搜索引擎。因为大型网站数据量太大,单个的sitemap会导致sitemap.xml文件太大,超过搜索引擎的容忍度。所以我们要将sitemap.xml拆分为数个,每个拆分后的sitemap.xml则保持在搜索引擎建议的范围内。第七部分:搜索引擎友好写作策略搜索引擎友好写作是创造海量数据对取得好的搜索引擎排名的很关键的一部分。而SEO人员不可能针对每个网页都提出SEO建议或者方案,所以对写作人员的培训尤为重要。如果所有写作人员都按照搜索引擎友好的原则去写作,则产生的效果是很恐怖的。1、 对写作人员要进行反复培训:写作人员不是SEO,没有经验,不可能一遍就领悟SEO的写作技巧。所以要对写作人员进行反复的培训才能达到效果。2、 创造内容先思考用户会去搜索什么,针对用户的搜索需求而写作。3、 重视title、meta写作:例如Meta虽然在搜索引擎的权重已经很低,但是不好的meta写作例如堆积关键词、关键词与内容不相关等行为反而会产生负作用。而Title的权重较高,尽量在Title中融入关键词。4、 内容与关键词的融合:在内容中要适当的融入关键词,使关键词出现在适当的位置,并保持适当的关键词密度。5、 为关键词加入链接很重要:为相关关键词加入链接,或者为本网页出现的其他网页的关键词加入链接,可以很好的利用内链优势。6、 为关键词使用语义化标签:第八部分:日志分析与数据挖掘日志分析与数据挖掘常常被我们所忽视,其实不管是大型网站还是中小网站,都是一件很有意义的工作。只是大型网站的日志分析和数据挖掘工作难度要更高一些,因为数据量实在太大,所以我们要具备足够的耐心来做该项工作,并且要有的放矢。1、 网站日志分析:网站日志分析的的种类有很多,如访问来源、浏览器、客户端屏幕大小、入口、跳出率、PV等。跟SEO工作最相关的主要有以下三种:a、搜索引擎流量导入;b、搜索引擎关键词分析;c、用户搜索行为统计分析2、 热点数据挖掘:我们可以通过自身的网站日志分析以及一些外在的工具和SEO自己对热点的把握能力来进行热点数据的挖掘。热点数据的挖掘主要有以下手段:a、把握行业热点,可以由编辑与SEO共同完成;b、预测潜在热点,对信息的敏感度要求较高,能够预测潜在的热门信息。c、自己创造热点,如炒作等;d、 为热点制作专题第九部分:为关键词创作专题除了最终页面,各种针对热门的关键词所制作的专题应该作为网站的第二大搜索引擎流量来源。我们在对热点数据进行挖掘后,就可以针对这些热门关键词制作专题了。制作的专题页的内容从何而来?我们一般通过程序实现对应关键词相关的信息进行筛选聚合,这样就使得内容与关键词高度匹配,为用户、为搜索引擎都提供了所需要的内容。当然,仅仅建立一个专题而没有辅助手段是很难保证专题的搜索引擎排名的,我们可以通过文章内链、频道页推荐、或者最终页的专题推荐来获得链接达到效果。1、为热点关键词制作专题2、关键词相关信息的聚合3、辅以文章内链导入链接

⑷ 大数据能知道买全程火车票中通上车的车站吗

可以的,目前大数据分析是通过你的手机接入当地移动网点或移动站点位置来确定你的位置,除非你的手机不开机,但你在进入安检进站时,需要刷身份证或人脸识别认证的,最后通过大数据分析,也是可以确定你的中途上车位置的。

⑸ 大数据都体现在哪些方面

在过去几年,大数据的建设主要集中在物联网、云计算、移动互联网等基础领域,一些大数据起步较早、积累较深的行业领域,开始基于大数据的基础建设,开启了行业数据应用与价值挖掘之路。从数据的抽取、清洗等预处理,到数据存储及管理,再到数据分析挖掘,以及最终的可视化呈现。行业用户开始把注意力转向大数据真正的价值点——发现规律,提升决策效率与能力。这一年,他们在收集数据上花费的时间很少,而在实际分析数据并回答各种问题上的时间则越来越多。目前进入大数据应用相对较成熟的领域主要在公安、交通、电力、园区管理、网络安全、航天等。大数据价值被挖掘,帮助各行业从业务管理、事前预警、事中指挥调度、事后分析研判等多个方面提升智能化决策能力。公安领域的大数据应用,可以实现从警综、警力、警情、人口、卡口/车辆、重点场所、摄像头管理等全方位进行公安日常监测与协调管理;实现突发事件下的可视化接处警、警情查询监控、辖区定位、应急指挥调度管理,满足公安行业平急结合的应用需求。从而全面提升公安机关智能化决策能力,提升警务资源利用和服务价值,为预防打击违法犯罪、维护社会稳定提供有力支持。交通领域的大数据应用,可以实现从公交车辆、司乘人员、运行线路、站点场站管理、乘客统计等多个维度进行日常路网运行监测与协调管理;支持突发事件下的值班接警、信息处理发布、应急指挥调度管理,发挥交通资源最大效益。电力领域的大数据应用,可以实现用户分布、节点负荷、电网拓扑、电能质量、窃电嫌疑、安全防御、能源消耗等智能电网多个环节进行日常运行监测与协调管理;满足常态下电网信息的实时监测监管、应急态下协同处置指挥调度的需要。全面提高电力行业管理的及时性和准确性,更好地实现电网安全、可靠、经济、高效运行。园区管理的大数据应用,可以实现从园区建设规划、管网运行、能耗监测、园区交通、安防管理、园区资源管理等多个维度进行日常运行监测与协调管理;从而全面加强园区创新、服务和管理能力,促进园区产业升级、提升园区企业竞争力。网络安全的大数据应用,能够实现对网络中的安全设备、网络设备、应用系统、操作系统等整体环境进行安全状态监测,帮助用户快速掌握网络状况,识别网络异常、入侵,把握网络安全事件发展趋势,全方位感知网络安全态势。航天是大数据应用最早也最成熟,取得成果最多的领域,航天要对尺度远比地球大无数倍的广阔空间进行探索,其总量更多,要求更高。因此,航天大数据不仅具有一般大数据的特点,更要求高可靠性和高价值。能够实现对航天测发、测控设备控制;航天指挥作战体系模拟推演、作战评估;航天作战指挥显示控制航天器数据分析、状态监控。供参考。

⑹ 关于大数据你不可不知的大企业及大布局

关于大数据你不可不知的大企业及大布局_数据分析师考试

如果说有一家科技公司准确定义了“大数据”概念的话,那一定是谷歌。根据搜索研究公司康姆斯科(Comscore)的调查,仅2012年3月一个月的时间,谷歌处理的搜索词条数量就高达122亿条。

谷歌不仅存储了它的搜索结果中出现的网络连接,还会储存所有人搜索关键词的行为,它能够精准地记录下人们进行搜索行为的时间、内容和方式。这些数据能够让谷歌优化广告排序,并将搜索流量转化为盈利模式。谷歌不仅能追踪人们的搜索行为,而且还能够预测出搜索者下一步将要做什么。换言之,谷歌能在你意识到自己要找什么之前预测出你的意图。这种抓取、存储并对海量人机数据进行分析,然后据此进行预测的能力,就是所谓的“大数据”。

2012:大数据十字路口?

为什么大数据突然变得这么火?为什么《纽约时报》把2012年定义为“大数据的十字路口”?

大数据之所以进入主流大众的视野,源自三种趋势的合力:

第一,许多高端消费品公司加强了对大数据的应用。社交网络巨擎 Facebook 使用大数据来追踪用户在其网络的行为,通过识别你在它的网络中的好友,从而给出新的好友推荐建议,用户拥有越多的好友,他们与 Facebook之间的黏度就越高。更多的好友意味着用户会分享更多照片、发布更多状态更新、玩更多的游戏。

商业网站LinkdIn则使用大数据在求职者和招聘职位之间建立关联。有了LinkdIn,猎头们再也不用向潜在的受聘者打陌生电话来碰运气,而可以通过简单的搜索找出潜在受聘者并联系他们。与此相似,求职者也可以通过联系网站上其他人,自然而然地将自己推销给潜在的雇主。

第二,以上两家公司都在2012年早些时候陆续上市。Facebook 在纳斯达克上市,LinkedIn 在纽约证券交易所上市。这两家企业和谷歌一样,虽然表面上是消费品公司,然而其本质是大数据企业。除去这两家,Splunk 也在 2012 年完成了上市,它是一家帮助大中型企业提供运营智能的大数据企业。这些企业的公开上市提高了华尔街对于大数据的兴趣。这种兴趣带来了空前的盛况——硅谷的风险投资家们开始前仆后继地投资大数据企业。大数据将引发下一波创业大潮,而这次浪潮有望让硅谷在未来几年取代华尔街。

第三,亚马逊、Facebook、LinkedIn 和其他以数据为核心消费品的活跃用户们,开始期待自己在工作中也能获得畅通无阻地使用大数据的体验,而不再仅仅限于生活娱乐。用户们此前一直想不通,既然互联网零售商亚马逊可以推荐阅读书目、推荐电影、推荐可供购买的产品,为什么他们所在的企业却做不到类似的事情。

比如,既然汽车租赁公司拥有客户过去租车的信息和现有可用车辆库存的信息,这些公司为何就不能在向不同的租车人提供合适的车辆方面做得更智能一点?公司还可以通过新的技术,将公开信息利用起来——比如某个特定市场的状况,会议活动信息,以及其他可能会影响市场需求和供给的事件。通过将内部供应链数据和外部市场数据结合在一起,公司就可以更加精确地预测什么车辆可用,以及可用时间。

与此类似,零售商应当可以将来自外部的公开数据和内部数据结合在一起,利用这种混合的数据进行产品定价和市场布局。同时还可以同时考虑影响现货供应能力的多种因素以及消费者购物习惯,包括哪两种产品相搭配会卖得更好,这样零售商就可以提升消费者的平均购买量,从而获得更高的利润。

谷歌的行动

谷歌的体量和规模,使它拥有比其他大多数企业更多的应用大数据的途径。谷歌的优势之一在于,它拥有一支软件工程师部队,这使得谷歌能够从无到有地建立大数据技术。

谷歌的另一个优势在于它所拥有的基础设施。谷歌搜索引擎本身的设计,就旨在让它能够无缝链接成千上万的服务器。如果出现更多的处理或存储需要,抑或某台服务器崩溃,谷歌的工程师们只要再添加更多的服务器就能轻松搞定。

谷歌软件技术的设计也秉持着同样的基础设施理念。MapRece(谷歌开发的编程工具,用于大规模数据集的并行运算。——译者注)和谷歌文件系统(Google File System)就是两个典型的例子。《连线》杂志在 2012年初夏曾报道称,这两个软件系统“重塑了谷歌建立搜索索引的方式”。

为数众多的企业如今开始使用Hadoop, 它是MapRece和谷歌文件系统的一种开源衍生产品。Hadoop允许横跨多台电脑,对庞大的数据集合进行分布式处理。在其他企业刚刚开始使用Hadoop的时候,谷歌早已多年深耕大数据技术,这让它在行业中获得了巨大的领先优势。

如今谷歌正在进一步开放数据处理领域,将其和更多第三方共享。谷歌最近刚刚推出web服务BigQuery。该项服务允许使用者对超大量数据集进行交互式分析。按照谷歌目前的状况,“超大量”,意味着数十亿行数据。BigQuery 就是按指令在云端运行的数据分析。

除此以外,谷歌还坐拥人们在谷歌网站进行搜索及经过其网络时所产生的大量机器数据。用户所输入的每一个搜索请求,都会让谷歌知道他在寻找什么,所有人类行为都会在互联网上留下痕迹路径,而谷歌占领了一个绝佳的点位来捕捉和分析该路径。

不仅如此,谷歌在搜索之外还有更多获取数据的途径。企业安装“谷歌分析(Google Analytics)”之类的产品来追踪访问者在其站点的足迹,而谷歌也可获得这些数据。网站还使用“谷歌广告联盟(Google Adsense)”,将来自谷歌广告客户网的广告展示在其站点,因此,谷歌不仅可以洞察自己网站上广告的展示效果,同样还可以对其他广告发布站点的展示效果一览无余。

将所有这些数据集合在一起所带来的结果是:企业不仅从最好的技术中获益,同样还可以从最好的信息中获益。在信息技术方面,许多企业可谓耗资巨大,然而在信息技术的组成部分之一——信息领域,谷歌所进行的庞大投入和所获得的巨大成功,却罕有企业能望其项背。

亚马逊步步紧逼

谷歌并不是惟一一个推行大数据的大型技术公司。互联网零售商亚马逊已经采取了一些激进的举动,令其有可能成为谷歌的最大威胁。

曾有分析者预测,亚马逊2015年营收将超过1000亿美元,它即将赶超沃尔玛成为世界最大的零售商。如同谷歌一样,亚马逊也要处理海量数据,只不过它处理数据带有更强的电商倾向。消费者们在亚马逊的网站上对想看的电视节目或是想买的产品所进行的每一次搜索,都会让亚马逊对该消费者的了解有所增加。基于搜索和产品购买行为,亚马逊就可以知道接下来应该推荐什么产品。而亚马逊的聪明之处还不止于此,它还会在网站上持续不断地测试新的设计方案,从而找出转化率最高的方案。

你会认为亚马逊网站上的某段页面文字只是碰巧出现的吗?如果你这样认为的话,你应该再好好想一想。整个网站的布局、字体大小、颜色、按钮以及其他所有的设计,其实都是在多次审慎测试后的最优结果。

以数据为导向的方法并不仅限于以上领域,按一位前员工的说法,亚马逊的企业文化就是冷冰冰的数据导向型文化。数据显示出什么是有效的、什么是无效的,新的商业投资项目必须要有数据的支撑。对数据的长期专注让亚马逊能够以更低的售价提供更好的服务。消费者常常会完全跳过谷歌之类的搜索引擎,直接去亚马逊网站搜索商品、并进行购买。

争夺消费者控制权的战争硝烟还在弥漫扩散,苹果、亚马逊、谷歌,以及微软,这四家公认的巨头如今不仅在互联网上厮杀,在移动领域同样打得难解难分。鉴于消费者们把越来越多的时间花在手机和平板电脑等移动设备上,坐在电脑前的时间越来越少,因此,那些能进入消费者掌中移动设备的企业,将在销售和获取消费者行为信息方面更具有优势。企业掌握的消费者群体和个体信息越多,它就越能够更好地制定内容、广告和产品。

从支撑新兴技术企业的基础设施到消费内容的移动设备,令人难以置信的是,亚马逊的触角已触及到更为广阔的领域。亚马逊在几年前就预见了将服务器和存储基础设施开放给其他人的价值。“亚马逊网络服务(Amazon Web Services,简称 AWS)”是亚马逊公司知名的面向公众的云服务提供者,为新兴企业和老牌公司提供可扩展的运算资源。虽然AWS 成立的时间不长,但已有分析者估计它每年的销售额超过15亿美元。

AWS所提供的运算资源为企业开展大数据行动铺平了道路。当然,企业依然可以继续投资建立以私有云为形式的自有基础设施,而且很多企业还会这样做。但是如果企业想尽快利用额外的、

可扩展的运算资源,他们还可以方便快捷地在亚马逊的公共云上使用多个服务器。如今亚马逊引领潮流、备受瞩目,靠的不仅是它自己的网站和Kindle之类新的移动设备,支持着数千个热门站点的基础设施同样功不可没。

AWS带来的结果是,大数据分析不再需要企业在IT上投入固定成本,如今,获取数据、分析数据都能够在云端简单迅速地完成。换句话说,企业过去由于无法存储而不得不抛弃数据,如今它们有能力获取和分析规模空前的数据。

实现信息优势

AWS之类的服务与Hadoop之类的开源技术相结合,意味着企业终于能够尝到信息技术在多年以前向世人所描绘的果实。

数十年来,人们对所谓“信息技术”的关注一直偏重于其中的“技术”部分。首席信息官的职责只不过是对服务器、存储和网络的购买及管理。而今,信息以及对信息的分析和存储、依据信息进行预测的能力,正成为企业竞争优势的来源。

信息技术刚刚兴起的时候,较早应用信息技术的企业能够更快地发展,超越他人。微软在20世纪90年代树立起威信,这不仅仅得益于它开发了世界上应用最为广泛的操作系统,还在于它当时在公司内部将电子邮件作为标准沟通机制。

在许多企业仍在犹豫是否采用电子邮件的时候,电子邮件事实上已经成为微软讨论招聘、产品决策、市场战略之类事务的机制。虽然群发电子邮件的交流在如今已是司空见惯,但在当时,这样的举措让微软较之其他未采用电子邮件的公司,更加具有速度和协作优势。拥抱大数据、在不同的组织之间民主化地使用数据,将会给企业带来与之相似的优势。诸如谷歌和Facebook之类的企业已经从“数据民主”中获益。

通过将内部数据分析平台开放给所有跟自己的公司相关的分析师、管理者和执行者,谷歌、Facebook 及其他一些公司已经让组织中的所有成员都能向数据提出跟商业有关的问题、获得答案

并迅速行动。 以Facebook为例,它将大数据推广成为内部的服务,这意味着该服务不仅是为工程师设计的,也是为终端用户——生产线管理人员设计的,他们需要运用查询来找出有效的方案。因此,管理者们不需要等待几天或是几周的时间来找出网站的哪些改变最有效,或者哪些广告方式效果最好,他们可以使用内部的大数据服务,而该服务就是为了满足其需求而设计的,这使得数据分析的结果很容易就可以在员工之间被分享。

过去的二十年是信息技术的时代,接下来二十年的主题仍会是信息技术。这些企业能够更快地处理数据,而公共数据资源和内部数据资源一体化将带来独特的洞见,使他们能够远远超越竞争对手。如同我所撰写的《大数据的八大定律》(The Top 8 Laws Of Big Data)所言,你分析数据的速度越快,它的预测价值就越大。企业如今正在渐渐远离批量处理(批量处理指先存储数据,事件之后再慢慢进行分析处理),转向实时分析来获取竞争优势。

对于高管们而言,好消息是:来自于大数据的信息优势不再只属于谷歌、亚马逊之类的大企业。Hadoop之类的开源技术让其他企业同样可以拥有这样的优势。老牌财富100强企业和新兴初创公司,都能够以合理的价格,利用大数据来获得竞争优势。

大数据的颠覆

大数据带来的颠覆,不仅是与以往相比可以获取和分析更多数据的能力,更重要的是获取和分析等量数据的价格也正在显著下降,而价格越低,销量就会越高。然而,隐含其中的讽刺关系正如所谓的“杰文斯悖论”(Jevons Paradox)。经济学家杰文斯通过观察工业革命得出该悖论,并以他的名字命名(杰文斯悖论的核心是,资源利用率的提高导致价格降低 , 最终会增加资源的使用量。——译者注)。科技进步使储存和分析数据的方式变得更有效率,公司将做更多的数据分析,因此并没有减少工作。简而言之,这就是大数据带来的颠覆。

从亚马逊到谷歌,从IBM到惠普和微软,大量的大型技术公司纷纷投身大数据,而基于大数据解决方案,更多初创型企业如雨后春笋般涌现,实现开放源和共享云。大公司致力于横向的大数据解决方案,与此同时,小公司则专注于为重要垂直业务提供应用程序。有些产品优化销售效率,还有些产品通过将不同渠道的营销业绩与实际的产品使用数据相关联,为未来营销活动提供建议。这些大数据应用(Big Data Applications,简称BDA)意味着小公司不必在内部开发或配备所有大数据技术;在很多情况下,它们可以利用基于云端的服务来满足数据分析需求。在技术之外,这些小企业还会开发一些产品,追踪记录与健康相关的指标并据此提出改善人们行为的建议。诸如此类的产品有望减少肥胖,提高生活质量,同时降低医疗成本。

大数据路线图

产业分析研究公司福雷斯特(Forrester)估计,企业数据的总量在以每年 94% 的增长率飙升。这样的高速增长之下,每个企业都需要一个大数据路线图。至少,企业应制订获取数据的战略,获取范围应从内部电脑系统的常规机器日志,到线上的用户交互记录。即使企业当时并不知道这些数据有什么用也要这样做,这些数据的用处随后或许会突然被发现。

数据所具有的价值远远高于你最初的期待,千万不要随便抛弃数据。企业还需要一个计划以应对数据的指数型增长。照片、即时信息以及电子邮件的数量非常庞大,由手机、GPS 及其他设备构成的“感应器”释放出的数据量甚至还要更大。

理想情况下,企业应该具备一种能够让数据分析贯穿于整个组织的视野,分析应该尽可能地接近实时。通过观察谷歌、亚马逊、Facebook和其他科技领袖企业,你可以看到大数据之下的种种可能。管理者需要做的就是在组织中融入大数据战略。

谷歌和亚马逊这样的企业,应用大数据进行决策已数年有余,它们在数据处理上已经获得了广泛的成功。而现在,你也可以拥有同样的能力。

以上是小编为大家分享的关于关于大数据你不可不知的大企业及大布局的相关内容,更多信息可以关注环球青藤分享更多干货

⑺ 求可以免费自学大数据的资源站点,谁知道

从事大数据开发是需要一定的数据库基础和编程基础的,而且大数据的教学视频或者书籍目前来说适合入门的非常少,课程也非常繁杂。自学的难度不小,如果你的逻辑思维能力足够好的话可以看尚硅谷的谷粒学院大数据教程。希望这个答案对你有帮助。

⑻ 如何建立一个完整可用的安全大数据平台

“要建立一个大数据系统,我们需要从数据流的源头跟踪到最后有价值的输出,并在现有的Hadoop和大数据生态圈内根据实际需求挑选并整合各部分合适的组件来构建一个能够支撑多种查询和分析功能的系统平台。这其中既包括了对数据存储的选择,也涵盖了数据线上和线下处理分离等方面的思考和权衡。此外,没有任何一个引入大数据解决方案的商业应用在生产环境上承担的起安全隐患。1计算框架篇大数据的价值只有在能指导人们做出有价值的决定时,数据才能体现其自身的价值。因此,大数据技术要服务于实际的用途,才是有意义的。一般来说,大数据可以从以下三个方面指导人们做出有价值的决定:报表生成(比如根据用户历史点击行为的跟踪和综合分析、 应用程序活跃程度和用户粘性计算等);诊断分析(例如分析为何用户粘性下降、根据日志分析系统为何性能下降、垃圾邮件以及病毒的特征检测等);决策(例如个性化新闻阅读或歌曲推荐、预测增加哪些功能能增加用户粘性、帮助广告主进行广告精准投放、设定垃圾邮件和病毒拦截策略等)。图 1进一步来看,大数据技术从以下三个方面解决了传统技术难以达成的目标(如图1):在历史数据上的低延迟(交互式)查询,目标是加快决策过程和时间, 例如分析一个站点为何变缓慢并尝试修复它; 在实时数据上的低延迟查询,目的是帮助用户和应用程序在实时数据上做出决策, 例如实时检测并阻拦病毒蠕虫(一个病毒蠕虫可以在1.3秒内攻击1百万台主机);更加精细高级的数据处理算法,这可以帮助用户做出“更好”的决策, 例如图数据处理、异常点检测、趋势分析及其他机器学习算法。蛋糕模式从将数据转换成价值的角度来说,在Hadoop生态圈十年蓬勃成长的过程中,YARN和Spark这二者可以算得上是里程碑事件。Yarn的出现使得集群资源管理和数据处理流水线分离,大大革新并推动了大数据应用层面各种框架的发展(SQL on Hadoop框架, 流数据,图数据,机器学习)。它使得用户不再受到MapRece开发模式的约束,而是可以创建种类更为丰富的分布式应用程序,并让各类应用程序运行在统一的架构上,消除了为其他框架维护独有资源的开销。就好比一个多层蛋糕,下面两层是HDFS和Yarn, 而MapRece就只是蛋糕上层的一根蜡烛而已,在蛋糕上还能插各式各样的蜡烛。在这一架构体系中,总体数据处理分析作业分三块(图2),在HBase上做交互式查询(Apache Phoenix, Cloudera Impala等), 在历史数据集上编写MapRece程序抑或利用Hive等做批处理业务, 另外对于实时流数据分析Apache Storm则会是一种标准选择方案。虽然Yarn的出现极大地丰富了Hadoop生态圈的应用场景,但仍存有两个显而易见的挑战:一是在一个平台上需要维护三个开发堆栈;二是在不同框架内很难共享数据,比如很难在一个框架内对流数据做交互式查询。这也意味着我们需要一个更为统一和支持更好抽象的计算框架的出现。图 2一统江湖Spark的出现使得批处理任务,交互式查询,实时流数据处理被整合到一个统一的框架内(图3),同时Spark和现有的开源生态系统也能够很好地兼容(Hadoop, HDFS, Yarn, Hive, Flume)。 通过启用内存分布数据集,优化迭代工作负载, 用户能够更简单地操作数据,并在此基础上开发更为精细的算法,如机器学习和图算法等。有三个最主要的原因促使Spark目前成为了时下最火的大数据开源社区(拥有超过来自200多个公司的800多个contributors):Spark可以扩展部署到超过8000节点并处理PB级别的数据,同时也提供了很多不错的工具供应用开发者进行管理和部署;Spark提供了一个交互式shell供开发者可以用Scala或者Python即时性试验不同的功能;Spark提供了很多内置函数使得开发者能够比较容易地写出低耦合的并且能够并发执行的代码,这样开发人员就更能集中精力地为用户提供更多的业务功能而不是花费时间在优化并行化代码之上。当然Spark也和当年的MapRece一样不是万灵药,比如对实时性要求很高的流数据处理上Apache Storm还是被作为主流选择, 因为Spark Streaming实际上是microbatch(将一个流数据按时间片切成batch,每个batch提交一个job)而不是事件触发实时系统,所以虽然支持者们认为microbatch在系统延时性上贡献并不多,但在生产环境中和Apache Storm相比还不是特别能满足对低延时要求很高的应用场景。比如在实践过程中, 如果统计每条消息的平均处理时间,很容易达到毫秒级别,但一旦统计类似service assurance(确保某条消息在毫秒基本能被处理完成)的指标, 系统的瓶颈有时还是不能避免。但同时我们不能不注意到,在许多用例当中,与流数据的交互以及和静态数据集的结合是很有必要的, 例如我们需要在静态数据集上进行分类器的模型计算,并在已有分类器模型的基础上,对实时进入系统的流数据进行交互计算来判定类别。由于Spark的系统设计对各类工作(批处理、流处理以及交互式工作)进行了一个共有抽象,并且生态圈内延伸出了许多丰富的库(MLlib机器学习库、SQL语言API、GraphX), 使得用户可以在每一批流数据上进行灵活的Spark相关操作,在开发上提供了许多便利。 Spark的成熟使得Hadoop生态圈在短短一年之间发生了翻天覆地的变化, Cloudera和Hortonworks纷纷加入了Spark阵营,而Hadoop项目群中除了Yarn之外已经没有项目是必须的了(虽然Mesos已在一些场合替代了Yarn), 因为就连HDFS,Spark都可以不依赖。但很多时候我们仍然需要像Impala这样的依赖分布式文件系统的MPP解决方案并利用Hive管理文件到表的映射,因此Hadoop传统生态圈依然有很强的生命力。另外在这里简要对比一下交互式分析任务中各类SQL on Hadoop框架,因为这也是我们在实际项目实施中经常遇到的问题。我们主要将注意力集中在Spark SQL, Impala和Hive on Tez上, 其中Spark SQL是三者之中历史最短的,论文发表在15年的SIGMOD会议上, 原文对比了数据仓库上不同类型的查询在Shark(Spark最早对SQL接口提供的支持)、Spark SQL和Impala上的性能比较。也就是说, 虽然Spark SQL在Shark的基础上利用Catalyst optimizer在代码生成上做了很多优化,但总体性能还是比不上Impala, 尤其是当做join操作的时候, Impala可以利用“predicate pushdown”更早对表进行选择操作从而提高性能。不过Spark SQL的Catalyst optimizer一直在持续优化中,相信未来会有更多更好的进展。Cloudera的Benchmark评测中Impala一直比其他SQL on Hadoop框架性能更加优越,但同时Hortonworks评测则指出虽然单个数据仓库查询Impala可以在很短的时间内完成,但是一旦并发多个查询Hive on Tez的优势就展示出来。另外Hive on Tez在SQL表达能力也要比Impala更强(主要是因为Impala的嵌套存储模型导致的), 因此根据不同的场景选取不同的解决方案是很有必要的。图 3各领风骚抑或代有才人出?近一年比较吸引人眼球的Apache Flink(与Spark一样已有5年历史,前身已经是柏林理工大学一个研究性项目,被其拥趸推崇为继MapRece, Yarn,Spark之后第四代大数据分析处理框架)。 与Spark相反,Flink是一个真正的实时流数据处理系统,它将批处理看作是流数据的特例,同Spark一样它也在尝试建立一个统一的平台运行批量,流数据,交互式作业以及机器学习,图算法等应用。Flink有一些设计思路是明显区别于Spark的,一个典型的例子是内存管理,Flink从一开始就坚持自己精确的控制内存使用并且直接操作二进制数据,而Spark一直到1.5版本都还是试用java的内存管理来做数据缓存,这也导致了Spark很容易遭受OOM以及JVM GC带来的性能损失。但是从另外一个角度来说, Spark中的RDD在运行时被存成java objects的设计模式也大大降低了用户编程设计门槛, 同时随着Tungsten项目的引入,Spark现在也逐渐转向自身的内存管理, 具体表现为Spark生态圈内从传统的围绕RDD(分布式java对象集合)为核心的开发逐渐转向以DataFrame(分布式行对象集合)为核心。总的来说,这两个生态圈目前都在互相学习,Flink的设计基因更为超前一些,但Spark社区活跃度大很多,发展到目前毫无疑问是更为成熟的选择,比如对数据源的支持(HBase, Cassandra, Parquet, JSON, ORC)更为丰富以及更为统一简洁的计算表示。另一方面,Apache Flink作为一个由欧洲大陆发起的项目,目前已经拥有来自北美、欧洲以及亚洲的许多贡献者,这是否能够一改欧洲在开源世界中一贯的被动角色,我们将在未来拭目以待。2NoSQL数据库篇NoSQL数据库在主流选择上依旧集中在MongoDB, HBase和Cassandra这三者之间。在所有的NoSQL选择中,用C 编写的MongoDB几乎应该是开发者最快也最易部署的选择。MongoDB是一个面向文档的数据库,每个文档/记录/数据(包括爬取的网页数据及其他大型对象如视频等)是以一种BSON(Binary JSON)的二进制数据格式存储, 这使得MongoDB并不需要事先定义任何模式, 也就是模式自由(可以把完全不同结构的记录放在同一个数据库里)。MongoDB对于完全索引的支持在应用上是很方便的,同时也具备一般NoSQL分布式数据库中可扩展,支持复制和故障恢复等功能。 MongoDB一般应用于高度伸缩性的缓存及大尺寸的JSON数据存储业务中,但不能执行“JOIN”操作,而且数据占用空间也比较大,最被用户诟病的就是由于MongoDB提供的是数据库级锁粒度导致在一些情况下建索引操作会引发整个数据库阻塞。一般来说,MongoDB完全可以满足一些快速迭代的中小型项目的需求。下面来主要谈谈Cassandra和HBase之间的比较选择。Cassandra和HBase有着截然不同的基因血统。HBase和其底层依赖的系统架构源自于著名的Google FileSystem(发表于2003年)和Google BigTable设计(发表于2006年), 其克服了HDFS注重吞吐量却牺牲I/O的缺点,提供了一个存储中间层使得用户或者应用程序可以随机读写数据。具体来说,HBase的更新和删除操作实际上是先发生在内存MemStore中, 当MemStore满了以后会Flush到StoreFile, 之后当StoreFile文件数量增长到一定阈值后会触发Compact合并操作,因此HBase的更新操作其实是不断追加的操作,而最终所有更新和删除数据的持久化操作都是在之后Compact过程中进行的。这使得应用程序在向内存MemStore写入数据后,所做的修改马上就能得到反映,用户读到的数据绝不会是陈旧的数据,保证了I/O高性能和数据完全一致性; 另一方面来说, HBase基于Hadoop生态系统的基因就已经决定了他自身的高度可扩展性、容错性。 在数据模型上,Cassandra和HBase类似实现了一个key-value提供面向列式存储服务,其系统设计参考了 Amazon Dynamo (发表于2007年) 分布式哈希(DHT)的P2P结构(实际上大部分Cassandra的初始工作都是由两位从Amazon的Dynamo组跳槽到Facebook的工程师完成),同样具有很高的可扩展性和容错性等特点。除此之外, 相对HBase的主从结构,Cassandra去中心化的P2P结构能够更简单地部署和维护,比如增加一台机器只需告知Cassandra系统新节点在哪,剩下的交给系统完成就行了。同时,Cassandra对多数据中心的支持也更好,如果需要在多个数据中心进行数据迁移Cassandra会是一个更优的选择。Eric Brewer教授提出的经典CAP理论认为任何基于网络的数据共享系统,最多只能满足数据一致性、可用性、分区容忍性三要素中的两个要素。实际分布式系统的设计过程往往都是在一致性与可用性上进行取舍,相比于HBase数据完全一致性的系统设计,Cassandra选择了在优先考虑数据可用性的基础上让用户自己根据应用程序需求决定系统一致性级别。比如:用户可以配置QUONUM参数来决定系统需要几个节点返回数据才能向客户端做出响应,ONE指只要有一个节点返回数据就可以对客户端做出响应,ALL指等于数据复制份数的所有节点都返回结果才能向客户端做出响应,对于数据一致性要求不是特别高的可以选择ONE,它是最快的一种方式。从基因和发展历史上来说,HBase更适合用做数据仓库和大规模数据处理与分析(比如对网页数据建立索引), 而Cassandra则更适合用作实时事务和交互式查询服务。Cassandra在国外市场占有比例和发展要远比国内红火, 在不少权威测评网站上排名都已经超过了HBase。目前Apache Cassandra的商业化版本主要由软件公司DataStax进行开发和销售推广。另外还有一些NoSQL分布式数据库如Riak, CouchDB也都在各自支持的厂商推动下取得了不错的发展。 虽然我们也考虑到了HBase在实际应用中的不便之处比如对二级索引的支持程度不够(只支持通过单个行键访问,通过行键的范围查询,全表扫描),不过在明略的大数据基础平台上,目前整合的是依然是HBase。理由也很简单,HBase出身就与Hadoop的生态系统紧密集成,其能够很容易与其他SQL on Hadoop框架(Cloudera Impala, Apache Phoenix, or Hive on Tez)进行整合,而不需要重新部署一套分布式数据库系统,而且可以很方便地将同样的数据内容在同一个生态系统中根据不同框架需要来变换存储格式(比如存储成Hive表或者Parquet格式)。我们在很多项目中都有需要用到多种SQL on Hadoop框架,来应对不同应用场景的情况,也体会到了在同一生态系统下部署多种框架的简便性。 但同时我们也遇到了一些问题, 因为HBase项目本身与HDFS和Zookeeper系统分别是由不同开源团队进行维护的,所以在系统整合时我们需要先对HBase所依赖的其他模块进行设置再对HBase进行配置,在一定程度上降低了系统维护的友好性。目前我们也已经在考虑将Cassandra应用到一些新的客户项目中,因为很多企业级的应用都需要将线上线下数据库进行分离,HBase更适合存储离线处理的结果和数据仓库,而更适合用作实时事务和并发交互性能更好的Cassandra作为线上服务数据库会是一种很好的选择。3大数据安全篇随着越来越多各式各样的数据被存储在大数据系统中,任何对企业级数据的破坏都是灾难性的,从侵犯隐私到监管违规,甚至会造成公司品牌的破坏并最终影响到股东收益。给大数据系统提供全面且有效的安全解决方案的需求已经十分迫切:大数据系统存储着许多重要且敏感的数据,这些数据是企业长久以来的财富与大数据系统互动的外部系统是动态变化的,这会给系统引入新的安全隐患在一个企业的内部,不同Business Units会用不同的方式与大数据系统进行交互,比如线上的系统会实时给集群推送数据、数据科学家团队则需要分析存储在数据仓库内的历史数据、运维团队则会需要对大数据系统拥有管理权限。因此为了保护公司业务、客户、财务和名誉免于被侵害,大数据系统运维团队必须将系统安全高度提高到和其他遗留系统一样的级别。同时大数据系统并不意味着引入大的安全隐患,通过精细完整的设计,仍然能够把一些传统的系统安全解决方案对接到最新的大数据集群系统中。 一般来说,一个完整的企业级安全框架包括五个部分:Administration: 大数据集群系统的集中式管理,设定全局一致的安全策略Authentication: 对用户和系统的认证Authorization:授权个人用户和组对数据的访问权限Audit:维护数据访问的日志记录Data Protection:数据脱敏和加密以达到保护数据的目的系统管理员要能够提供覆盖以上五个部分的企业级安全基础设施,否则任何一环的缺失都可能给整个系统引入安全性风险。在大数据系统安全集中式管理平台这块,由Hortonworks推出的开源项目Apache Ranger就可以十分全面地为用户提供Hadoop生态圈的集中安全策略的管理,并解决授权(Authorization)和审计(Audit)。例如,运维管理员可以轻松地为个人用户和组对文件、数据等的访问策略,然后审计对数据源的访问。与Ranger提供相似功能的还有Cloudera推出的Apache Sentry项目,相比较而言Ranger的功能会更全面一些。而在认证(Authentication)方面, 一种普遍采用的解决方案是将基于Kerberos的认证方案对接到企业内部的LDAP环境中, Kerberos也是唯一为Hadoop全面实施的验证技术。另外值得一提的是Apache Knox Gateway项目,与Ranger提高集群内部组件以及用户互相访问的安全不同,Knox提供的是Hadoop集群与外界的唯一交互接口,也就是说所有与集群交互的REST API都通过Knox处理。这样,Knox就给大数据系统提供了一个很好的基于边缘的安全(perimeter-based security)。基于以上提到的五个安全指标和Hadoop生态圈安全相关的开源项目, 已经足已证明基于Hadoop的大数据平台我们是能够构建一个集中、一致、全面且有效的安全解决方案。我市再ITjob管网上面找的

⑼ 大数据都体现在哪些方面

大数据体现在方方面面,今两年疫情防控为例,大数据把海陆空交通、医院,政府,公安,安检信息全部整合到一起,比如一架飞机落地后,其中一名乘客被确诊为疑似病例。其他乘客就可以通过大数据来一个个全部找到,主要是通过他们订票信息,得知他们的联系方式,头像,行走路径,就可以找到与疑似病例的密切接触者有哪些,都去过哪儿,等等。另外,现在所有的交通事故,安全生产事故都可以通过大数据来统一调度,救援,等。我们生活中也很多啊,我们平时点的外卖,点过一次,或者多次,就会出现在点单的最上面,这都是大数据分析出来的数据。我们平时搜索过什么,广告推送都会崩出来,特别是淘宝和京东,直接广告就出现弹框,吸引你去购买,打开这些app,你会发现最近搜的东西推送的不光多,类似的一些也会推送。公安领域的大数据应用,可以实现从警综、警力、警情、人口、卡口/车辆、重点场所、摄像头管理等全方位进行公安日常监测与协调管理;实现突发事件下的可视化接处警、警情查询监控、辖区定位、应急指挥调度管理,满足公安行业平急结合的应用需求。从而全面提升公安机关智能化决策能力,提升警务资源利用和服务价值,为预防打击违法犯罪、维护社会稳定提供有力支持。交通领域的大数据应用,可以实现从公交车辆、司乘人员、运行线路、站点场站管理、乘客统计等多个维度进行日常路网运行监测与协调管理;支持突发事件下的值班接警、信息处理发布、应急指挥调度管理,发挥交通资源最大效益电力领域的大数据应用,可以实现用户分布、节点负荷、电网拓扑、电能质量、窃电嫌疑、安全防御、能源消耗等智能电网多个环节进行日常运行监测与协调管理;满足常态下电网信息的实时监测监管、应急态下协同处置指挥调度的需要。全面提高电力行业管理的及时性和准确性,更好地实现电网安全、可靠、经济、高效运行。园区管理的大数据应用,可以实现从园区建设规划、管网运行、能耗监测、园区交通、安防管理、园区资源管理等多个维度进行日常运行监测与协调管理;从而全面加强园区创新、服务和管理能力,促进园区产业升级、提升园区企业竞争力。网络安全的大数据应用,能够实现对网络中的安全设备、网络设备、应用系统、操作系统等整体环境进行安全状态监测,帮助用户快速掌握网络状况,识别网络异常、入侵,把握网络安全事件发展趋势,全方位感知网络安全态势。航天是大数据应用最早也最成熟,取得成果最多的领域,航天要对尺度远比地球大无数倍的广阔空间进行探索,其总量更多,要求更高。因此,航天大数据不仅具有一般大数据的特点,更要求高可靠性和高价值。能够实现对航天测发、测控设备控制;航天指挥作战体系模拟推演、作战评估;航天作战指挥显示控制航天器数据分析、状态监控。

⑽ 行程大数据是根据什么定位的

通信大数据行程卡是通过手机号信号位置来定位使用者位置信息的。

简单来说,就是利用手机与基站之间的通信定位,因为手机随机移动到任何地方,只要能和基站通信,就能进行数据交互,移动通信网络下的站点划分为很多位置区,每个位置区从几平方公里到几十平方公里不等(话务量高的地方位置区会小一些,话务量低的地方位置区可以大一些)。

行程码注意事项

为精准把握分区分级防控要求,推进生产生活秩序全面有序恢复,根据疫情防控形势需要,将在全区范围内推广“居民健康码”“个人行程码”。

辖区的高铁南站、汽车站、企事业单位、宾馆、酒店、网约房、民宿、出租屋、网吧、娱乐场所等人员流动和聚集区域要全面倡导使用“两码”,对所有进入人员逐一查验“两码”。

赞(0)