Ⅰ 大数据概述及基本概念
大数据的定义首先,还是要重新审视大数据的定义。
行业里对大数据的定义有很多,有广义的定义,也有狭义的定义。广义的定义,有点哲学味道——大数据,是指物理世界到数字世界的映射和提炼。通过发现其中的数据特征,从而做出提升效率的决策行为。狭义的定义,是技术工程师给的——大数据,是通过获取、存储、分析,从大容量数据中挖掘价值的一种全新的技术架构。相比较而言,我还是喜欢技术定义,哈哈。大家注意,关键词我都在上面原句加粗了哈!要做什么?——获取数据、存储数据、分析数据对谁做?——大容量数据目的是什么?——挖掘价值获取数据、存储数据、分析数据,这一系列的行为,都不算新奇。我们每天都在用电脑,每天都在干这个事。例如,每月的月初,考勤管理员会获取每个员工的考勤信息,录入Excel表格,然后存在电脑里,统计分析有多少人迟到、缺勤,然后扣TA工资。但是,同样的行为,放在大数据身上,就行不通了。换言之,传统个人电脑,传统常规软件,无力应对的数据级别,才叫“大数据”。
2.大数据,到底有多大?
我们传统的个人电脑,处理的数据,是GB/TB级别。例如,我们的硬盘,现在通常是1TB/2TB/4TB的容量。TB、GB、MB、KB的关系,大家应该都很熟悉了:1 KB = 1024 B (KB – kilobyte)1 MB = 1024 KB (MB – megabyte)1 GB = 1024 MB (GB – gigabyte)1 TB = 1024 GB (TB – terabyte)而大数据是什么级别呢?PB/EB级别。大部分人都没听过。其实也就是继续翻1024倍:1 PB = 1024 TB (PB – petabyte)1 EB = 1024 PB (EB – exabyte)只是看这几个字母的话,貌似不是很直观。我来举个例子吧。1TB,只需要一块硬盘可以存储。容量大约是20万张照片或20万首MP3音乐,或者是671部《红楼梦》小说。1PB,需要大约2个机柜的存储设备。容量大约是2亿张照片或2亿首MP3音乐。如果一个人不停地听这些音乐,可以听1900年。1EB,需要大约2000个机柜的存储设备。如果并排放这些机柜,可以连绵1.2公里那么长。如果摆放在机房里,需要21个标准篮球场那么大的机房,才能放得下。阿里、网络、腾讯这样的互联网巨头,数据量据说已经接近EB级。EB还不是最大的。目前全人类的数据量,是ZB级。1 ZB = 1024 EB (ZB – zettabyte)2011年,全球被创建和复制的数据总量是1.8ZB。而到2020年,全球电子设备存储的数据,将达到35ZB。如果建一个机房来存储这些数据,那么,这个机房的面积将比42个鸟巢体育场还大。数据量不仅大,增长还很快——每年增长50%。也就是说,每两年就会增长一倍。目前的大数据应用,还没有达到ZB级,主要集中在PB/EB级别。大数据的级别定位:1 KB = 1024 B (KB – kilobyte)1 MB = 1024 KB (MB – megabyte)1 GB = 1024 MB (GB – gigabyte)1 TB = 1024 GB (TB – terabyte)1 PB = 1024 TB (PB – petabyte)1 EB = 1024 PB (EB – exabyte)1 ZB = 1024 EB (ZB – zettabyte)
3.数据的来源
数据的增长,为什么会如此之快?说到这里,就要回顾一下人类社会数据产生的几个重要阶段。大致来说,是三个重要的阶段。第一个阶段,就是计算机被发明之后的阶段。尤其是数据库被发明之后,使得数据管理的复杂度大大降低。各行各业开始产生了数据,从而被记录在数据库中。这时的数据,以结构化数据为主(待会解释什么是“结构化数据”)。数据的产生方式,也是被动的。如果你对大数据开发感兴趣,想系统学习大数据的话,可以戳我加入大数据技术学习交流群,私信管理员即可免费领取开发工具以及入门学习资料第二个阶段,是伴随着互联网2.0时代出现的。互联网2.0的最重要标志,就是用户原创内容。随着互联网和移动通信设备的普及,人们开始使用博客、facebook、youtube这样的社交网络,从而主动产生了大量的数据。第三个阶段,是感知式系统阶段。随着物联网的发展,各种各样的感知层节点开始自动产生大量的数据,例如遍布世界各个角落的传感器、摄像头。经过了“被动-主动-自动”这三个阶段的发展,最终导致了人类数据总量的极速膨胀。
4.大数据的4Vs
行业里对大数据的特点,概括为4个V。前面所说的庞大数据体量,就是Volume(海量化)。除了Volume之外,剩下三个,分别是Variety、Velocity、Value。我们一个一个来介绍。
Variety(多样化)
数据的形式是多种多样的,包括数字(价格、交易数据、体重、人数等)、文本(邮件、网页等)、图像、音频、视频、位置信息(经纬度、海拔等),等等,都是数据。数据又分为结构化数据和非结构化数据。从名字可以看出,结构化数据,是指可以用预先定义的数据模型表述,或者,可以存入关系型数据库的数据。例如,一个班级所有人的年龄、一个超市所有商品的价格,这些都是结构化数据。而网页文章、邮件内容、图像、音频、视频等,都属于非结构话数据。在互联网领域里,非结构化数据的占比已经超过整个数据量的80%。大数据,就符合这样的特点:数据形式多样化,且非结构化数据占比高。
Velocity(时效性)
大数据还有一个特点,那就是时效性。从数据的生成到消耗,时间窗口非常小。数据的变化速率,还有处理过程,越来越快。例如变化速率,从以前的按天变化,变成现在的按秒甚至毫秒变化。我们还是用数字来说话:就在刚刚过去的这一分钟,数据世界里发生了什么?Email:2.04亿封被发出Google:200万次搜索请求被提交Youtube:2880分钟的视频被上传Facebook:69.5万条状态被更新Twitter:98000条推送被发出12306:1840张车票被卖出……怎么样?是不是瞬息万变?
Value(价值密度)
最后一个特点,就是价值密度。大数据的数据量很大,但随之带来的,就是价值密度很低,数据中真正有价值的,只是其中的很少一部分。例如通过监控视频寻找犯罪分子的相貌,也许几TB的视频文件,真正有价值的,只有几秒钟。
Ⅱ 什么是大数据分析Hadoop
要了解什么是Hadoop,我们必须首先了解与大数据和传统处理系统有关的问题。前进,我们将讨论什么是Hadoop,以及Hadoop如何解决与大数据相关的问题。我们还将研究CERN案例研究,以突出使用Hadoop的好处。
在之前的博客“ 大数据教程”中,我们已经详细讨论了大数据以及大数据的挑战。在此博客中,我们将讨论:
1、传统方法的问题
2、Hadoop的演变
3、Hadoop的
4、Hadoop即用解决方案
5、何时使用Hadoop?
6、什么时候不使用Hadoop?
一、CERN案例研究
大数据正在成为组织的机会。现在,组织已经意识到他们可以通过大数据分析获得很多好处,如下图所示。他们正在检查大型数据集,以发现所有隐藏的模式,未知的相关性,市场趋势,客户偏好和其他有用的业务信息。
这些分析结果正在帮助组织进行更有效的营销,新的收入机会,更好的客户服务。他们正在提高运营效率,与竞争对手组织相比的竞争优势以及其他业务利益。
什么是Hadoop –大数据分析的好处
因此,让我们继续前进,了解在兑现大数据机会方面与传统方法相关的问题。
二、传统方法的问题
在传统方法中,主要问题是处理数据的异构性,即结构化,半结构化和非结构化。RDBMS主要关注于银行交易,运营数据等结构化数据,而Hadoop则专注于文本,视频,音频,Facebook帖子,日志等半结构化,非结构化数据。RDBMS技术是一种经过验证的,高度一致,成熟的系统许多公司的支持。另一方面,由于大数据(主要由不同格式的非结构化数据组成)对Hadoop提出了需求。
现在让我们了解与大数据相关的主要问题是什么。因此,继续前进,我们可以了解Hadoop是如何成为解决方案的。
什么是Hadoop –大数据问题
第一个问题是存储大量数据。
无法在传统系统中存储大量数据。原因很明显,存储将仅限于一个系统,并且数据正在以惊人的速度增长。
第二个问题是存储异构数据。
现在,我们知道存储是一个问题,但是让我告诉您,这只是问题的一部分。由于我们讨论了数据不仅庞大,而且还以各种格式存在,例如:非结构化,半结构化和结构化。因此,您需要确保您拥有一个系统来存储从各种来源生成的所有这些种类的数据。
第三个问题是访问和处理速度。
硬盘容量正在增加,但磁盘传输速度或访问速度并未以相似的速度增加。让我以一个示例为您进行解释:如果您只有一个100 Mbps I / O通道,并且正在处理1TB数据,则大约需要2.91个小时。现在,如果您有四台具有一个I / O通道的计算机,则对于相同数量的数据,大约需要43分钟。因此,与存储大数据相比,访问和处理速度是更大的问题。
在了解什么是Hadoop之前,让我们首先了解一下Hadoop在一段时间内的发展。
Hadoop的演变
2003年,道格·切特(Doug Cutting)启动了Nutch项目,以处理数十亿次搜索并为数百万个网页建立索引。2003年10月下旬– Google发布带有GFS(Google文件系统)的论文。2004年12月,Google发布了MapRece论文。在2005年,Nutch使用GFS和MapRece进行操作。2006年,雅虎与Doug Cutting及其团队合作,基于GFS和MapRece创建了Hadoop。如果我告诉您,您会感到惊讶,雅虎于2007年开始在1000个节点的群集上使用Hadoop。
2008年1月下旬,雅虎向Apache Software Foundation发布了Hadoop作为一个开源项目。2008年7月,Apache通过Hadoop成功测试了4000个节点的集群。2009年,Hadoop在不到17小时的时间内成功整理了PB级数据,以处理数十亿次搜索并为数百万个网页建立索引。在2011年12月,Apache Hadoop发布了1.0版。2013年8月下旬,发布了2.0.6版。
当我们讨论这些问题时,我们发现分布式系统可以作为解决方案,而Hadoop提供了相同的解决方案。现在,让我们了解什么是Hadoop。
三、什么是Hadoop?
Hadoop是一个框架,它允许您首先在分布式环境中存储大数据,以便可以并行处理它。 Hadoop中基本上有两个组件:
1、大数据Hadoop认证培训
2、讲师指导的课程现实生活中的案例研究评估终身访问探索课程
什么是Hadoop – Hadoop即解决方案
第一个问题是存储大数据。
HDFS提供了一种分布式大数据存储方式。您的数据存储在整个DataNode的块中,您可以指定块的大小。基本上,如果您拥有512MB的数据,并且已经配置了HDFS,那么它将创建128MB的数据块。 因此,HDFS将数据分为512/128 = 4的4个块,并将其存储在不同的DataNode上,还将在不同的DataNode上复制数据块。现在,由于我们正在使用商品硬件,因此存储已不是难题。
它还解决了缩放问题。它着重于水平缩放而不是垂直缩放。您始终可以根据需要随时在HDFS群集中添加一些额外的数据节点,而不是扩展DataNodes的资源。让我为您总结一下,基本上是用于存储1 TB的数据,您不需要1 TB的系统。您可以在多个128GB或更少的系统上执行此操作。
下一个问题是存储各种数据。
借助HDFS,您可以存储各种数据,无论是结构化,半结构化还是非结构化。由于在HDFS中,没有预转储模式验证。并且它也遵循一次写入和多次读取模型。因此,您只需写入一次数据,就可以多次读取数据以寻找见解。
Hird的挑战是访问和处理数据更快。
是的,这是大数据的主要挑战之一。为了解决该问题,我们将处理移至数据,而不是将数据移至处理。这是什么意思?而不是将数据移动到主节点然后进行处理。在MapRece中,处理逻辑被发送到各个从属节点,然后在不同的从属节点之间并行处理数据。然后,将处理后的结果发送到主节点,在该主节点上合并结果,并将响应发送回客户端。
在YARN架构中,我们有ResourceManager和NodeManager。ResourceManager可能会或可能不会与NameNode配置在同一台机器上。 但是,应该将NodeManager配置在存在DataNode的同一台计算机上。
YARN通过分配资源和安排任务来执行您的所有处理活动。
什么是Hadoop – YARN
它具有两个主要组件,即ResourceManager和NodeManager。
ResourceManager再次是主节点。它接收处理请求,然后将请求的各个部分相应地传递到相应的NodeManager,什么是大数据分析Hadoop在此进行实际处理。NodeManager安装在每个DataNode上。它负责在每个单个DataNode上执行任务。
我希望现在您对什么是Hadoop及其主要组件有所了解。让我们继续前进,了解何时使用和何时不使用Hadoop。
何时使用Hadoop?
Hadoop用于:
1、搜索 – Yahoo,亚马逊,Zvents
2、日志处理 – Facebook,雅虎
3、数据仓库 – Facebook,AOL
4、视频和图像分析 –纽约时报,Eyealike
到目前为止,我们已经看到了Hadoop如何使大数据处理成为可能。但是在某些情况下,不建议使用Hadoop。
Ⅲ 大数据是什么概念
世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从政府到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。
所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?
七:最后北京开运联合给您总结一下
不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。
1、从大数据的价值链条来分析,存在三种模式:
1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。
2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。
3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。
2、未来在大数据领域最具有价值的是两种事物:
1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;
2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。
大 数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不 断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于 数据的应用需求和应用水平进入新的阶段。
Ⅳ 大数据可以概括为5个v,包括以下哪些
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为版5个V, 数据量大(Volume)、速度快权(Velocity)、类型多(Variety)、Value(价值)、真实性(Veracity)。大数据作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。随着大数据时代的来临,大数据分析也应运而生
Ⅳ 什么叫大数据
大数据概述专业解释:大数据英文名叫big data,是一种IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。通俗解释:大数据通俗的解释就是海量的数据,顾名思义,大就是多、广的意思,而数据就是信息、技术以及数据资料,合起来就是多而广的信息、技术、以及数据资料。大数据提出时间“大数据”这个词是由维克托·迈尔-舍恩伯格及肯尼斯·库克耶于2008年8月中旬共同提出。大数据的特点Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)-由IBM提出。大数据存在的意义和用途是什么?看似大数据是一个很高大上的感觉,和我们普通人的生活相差甚远,但是其实不然!大数据目前已经存在我们生活中的各种角落里了,举个例子,我们现在目前最关心的疫情情况数据,用的就是大数据的技术,可以实时查看确诊人数以及各种疫情数据。大数据存在的意义是什么?从刚才的举例中我们基本可以了解,大数据是很重要的,其存在的意义简单来说也是为了帮助人们更直观更方便的去了解数据。而通过了解这些数据后又可以更深一步的去挖掘其他有价值的数据,例如今日头条/抖音等产品,通过对用户进行整理和分析,然后根据用户的各种数据来判断用户的喜爱,进而推荐用户喜欢看的东西,这样做不仅提升了自身产品的体验度,也为用户提供了他们需要的内容。大数据的用途有哪些?要说大数据的用途,那可就相当广泛了,基本各行各业都可以运用到大数据的知识。如果简单理解的话,可分为以下四类:用途一:业务流程优化大数据更多的是协助业务流程效率的提升。能够根据并运用社交网络数据信息 、网站搜索及其天气预告找出有使用价值的数据信息,这其中大数据的运用普遍的便是供应链管理及其派送线路的提升。在这两个层面,自然地理精准定位和无线通信频率的鉴别跟踪货物和送大货车,运用交通实时路况线路数据信息来选择更好的线路。人力资源管理业务流程也根据大数据的剖析来开展改善,这这其中就包含了职位招聘的调整。用途二:提高医疗和研发大型数据分析应用程序的计算能力允许我们在几分钟内解码整个dna。可以创造新的治疗方法。它还能更好地掌握和预测疾病。如同大家配戴智能手表和别的能够转化成的数据信息一样,互联网大数据还可以协助病人尽快医治疾患。现在大数据技术已经被用于医院监测早产儿和生病婴儿的状况。通过记录和分析婴儿的心跳,医生预测可能的不适症状。这有助于医生更好地帮助宝宝。用途三:改善我们的城市大数据也被用于改进我们在城市的生活起居。比如,依据城市的交通实时路况信息,运用社交媒体季节变化数据信息,增加新的交通线路。现阶段,很多城市已经开展数据分析和示范点新项目。用途四:理解客户、满足客户服务需求互联网大数据的运用在这个行业早已广为人知。重点是如何使用大数据来更好地掌握客户及其兴趣和行为。企业非常喜欢收集社交数据、浏览器日志、分析文本和传感器数据,以更全面地掌握客户。一般来说,建立数据模型是为了预测。如何利用大数据?那我们了解了这么多关于大数据的知识,既然大数据这么好,我们怎么去利用大数据呢?那这个就要说到大数据的工具BI了,BI简单理解就是用来分析大数据的工具,从数据的采集到数据的分析以及挖掘等都需要用到BI,BI兴起于国外,比较知名的BI工具有Tableau、Power BI等;而国内比较典型的厂家就是亿信华辰了。虽然BI兴起于国外,但是这些年随着国内科技的进步以及不断的创新,目前国内BI在技术上也不比国外的差,而且因为国内外的差异化,在BI的使用逻辑上,国内BI更符合国内用户的需求。希望对您有所帮助!~
Ⅵ 东北大学人工智能和大数据概述怎么样
东北大学人工智能和大数据概述专业很好。东北大学人工智能专业非常好,这个专业在东大应该是最具潜力的。大数据,东大的计算机以数据库技术见长。东北大学人工智能专业的录取分数线并不低。去年,人工智能专业在个省份招生的分数线应该都是东大前三(其它两个是计算机大类和自动化)。东北大学是教育部批准的首批建设人工智能专业的35所高校之一,2019年开始第一届招生,现在应该有两届学生。虽然是个新的本科专业,但是国内的很多高校在人工智能方面都有很好的积累,不过大多数集中在科研和研究生培养,本科专业建设应该算是个新的尝试。