『壹』 中软卓越java培训大数据集群课都有哪些知识点,求介绍,细说一下
java分成J2ME(移动应用开发),J2SE(桌面应用开发),J2EE(Web企业级应用),所以java并不是单机版的,只是面向对象语言第一阶段:1.JAVA语法和基础,包括循环。和类的相关内容,如实现,继承什么的2.需要掌握几个重点的集合,List接口的两个子类LinkedList,ArrayList;然后是Map几口的两个子类HashMap,HashTable;Set接口掌握List后学Set就容易了;掌握Collection和Collections的区别3.掌握IO一章,重点的几个流 InputStream,OuputStream;BufferedReader,BufferedWrite;ObjectInputStream, ObjectOutputStream,,PrintWriter,FileReader,FileWriter了解JAVA的序列化,掌握JAVA的File类4.JDBC非常重要,重点掌握Connection,PreparedStatement, Statement,ResultSet,其他的可以在学习或项目中如果碰到再学第二阶段1.HTML+JAVASCRIPT,掌握多少看自己把握了,CSS做了解即可2.jsP+Servlet,需要重点掌握几个,Request,Response,Session,其次是Application.另外需要知道Redirect,ForWard的区别,Servlet的生命周期等3. 标签方面:(1)掌握EL表达式;(2)最好掌握JSTL标签4. 学习AJAX,无需深入研究5. 掌握了上面的,还可以继续学习框架:Struts2.0;Hibernate3;Spring 2.0
『贰』 大数据需要掌握哪些技能
大数据学什么
大数据需要掌握的内容包括8个方面,你可以根据这个路线图的顺序学习,选择培训机构的时候重点关注机构的口碑,希望你早日学有所成。
『叁』 以道大数据课程体系都讲什么
大数据技术在如今应用非常广泛,许多想入行学习大数据培训的童鞋不知从何学起,从哪儿开始学首先要根据你的基本情况而定,如果你是零基础的也不需要担心,先从基础开始学起就好了,接下来学习基础java开始、数据结构、关系型数据库、linux系统操作,夯实基础之后,再进入大数据的学习,例如:hadoop离线分析、Storm实时计算、spark内存计算的学习,以道教育大数据课程体系可以如下:第一阶段 WEB 开发基础HTML基础1、Html基本介绍2、HTML语法规范3、基本标签介绍4、HTML编辑器/文本文档/WebStrom/elipse5、HTML元素和属性6、基本的HTML元素6.1 标题6.2 段落6.3 样式和style属性6.3 链接 a6.4 图像 img6.5 表格 table6.6 列表 ul/ol/dl7、 HTML注释8、表单介绍9、Table标签10、DIV布局介绍11、HTML列表详解HTML布局和Bootstrap1、 HTML块元素(block)和行内元素(inline)2、使用div实现网页布局3、响应式WEB设计(Responsive Web Design)4、使用bootstrap实现响应式布局HTML表单元素1、HTML表单 form2、HTML表单元素3、 HTML input的类型 type4、 Html input的属性CSS基础1、CSS简介及基本语法2、在HTML文档中使用CSS3、CSS样式4、CSS选择器5、盒子模型6、布局及定位CSS高级/CSS31、尺寸和对齐2、分类(clear/cursor/display/float/position/visibility)3、导航栏4、图片库5、图片透明6、媒介类型 @media7、CSS38、CSS3动画效果JavaScript基础1、JavaScript简介2、基本语法规则3、在HTML文档中使用JS4、JS变量5、JS数据类型6、JS函数7、JS运算符8、流程控制9、JS错误和调试JavaScript对象和作用域1、数字 Number2、字符串String3、日期 Date4、数组5、数学 Math6、DOM对象和事件7、BOM对象8、Window对象9、作用域和作用域链10、JSONJavascript库1、Jquery2、Prototype3、Ext JsJquery1、Jquery基本语法2、Jquery选择器3、Jquery事件4、Jquery选择器5、Jquery效果和动画6、使用Jquery操作HTML和DOM7、Jquery遍历8、Jquery封装函数9、Jquery案例表单验证和Jquery Validate1、用Js对HTML表单进行验证2、Jquery Validata基本用法3、默认校验规则和提示信息4、debug和ignore5、更改错误信息显示位置和样式6、全部校验通过后的执行函数7、修改验证触发方式8、异步验证9、自定义校验方法10、radio 和 checkbox、select 的验证Java基础1、关于Java2、Java运行机制3、第一个Java程序,注释4、Javac,Java,Javadoc等命令5、标识符与关键字6、变量的声明,初始化与应用7、变量的作用域8、变量重名9、基本数据类型10、类型转换与类型提升11、各种数据类型使用细节12、转义序列13、各种运算符的使用流程控制1、选择控制语句if-else2、选择控制语句switch-case3、循环控制语句while4、循环控制语句do-while5、循环控制语句for与增强型for6、break,continue,return7、循环标签8、数组的声明与初始化9、数组内存空间分配10、栈与堆内存11、二维(多维)数组12、Arrays类的相关方法13、main方法命令行参数面向对象1、面向对象的基本思想2、类与对象3、成员变量与默认值4、方法的声明,调用5、参数传递和内存图6、方法重载的概念7、调用原则与重载的优势8、构造器声明与默认构造器9、构造器重载10、this关键字的使用11、this调用构造器原则12、实例变量初始化方式13、可变参数方法访问权限控制1、包 package和库2、访问权限修饰符private/protected/public/包访问权限3、类的访问权限4、抽象类和抽象方法5、接口和实现6、解耦7、Java的多重继承8、通过继承来扩展接口错误和异常处理1、概念:错误和异常2、基本异常3、捕获异常 catch4、创建自定义异常5、捕获所有异常6、Java标准异常7、使用finally进行清理8、异常的限制9、构造器10、异常匹配11、异常使用指南数据库基础(MySQL)数据库基础(MySQL)JDBC1、Jdbc基本概念2、使用Jdbc连接数据库3、使用Jdbc进行crud操作4、使用Jdbc进行多表操作5、Jdbc驱动类型6、Jdbc异常和批量处理7、Jdbc储存过程Servlet和JSP1、Servlet简介2、Request对象3、Response对象4、转发和重定向5、使用Servlet完成Crud6、Session和Coolie简介7、ServletContext和Jsp8、El和Jstl的使用Ajax1、什么是Ajax2、XMLHttpRequest对象(XHR)3、XHR请求4、XHR响应5、readystate/onreadystatechange6、Jquery Ajax7、JSON8、案例:对用户名是否可用进行服务器端校验综合案例1、项目开发一般流程介绍2、模块化和分层3、DButils4、QueryRunner5、ResultSetHandle6、案例:用户登录/注册,从前端到后端第二阶段 Java SE访问权限和继承1、包的声明与使用2、import与import static3、访问权限修饰符4、类的封装性5、static(静态成员变量)6、final(修饰变量,方法)7、静态成员变量初始化方式8、类的继承与成员继承9、super的使用10、调用父类构造器11、方法的重写与变量隐藏12、继承实现多态和类型转换13、instanceof抽象类与接口1、抽象类2、抽象方法3、继承抽象类4、抽象类与多态5、接口的成员6、静态方法与默认方法7、静态成员类8、实例成员类9、局部类10、匿名类11、eclipse的使用与调试12、内部类对外围类的访问关系13、内部类的命名Lambda表达式与常用类1、函数式接口2、Lambda表达式概念3、Lambda表达式应用场合4、使用案例5、方法引用6、枚举类型(编译器的处理)7、包装类型(自动拆箱与封箱)8、String方法9、常量池机制10、String讲解11、StringBuilder讲解12、Math,Date使用13、Calendars使用异常处理与泛型1、异常分类2、try-catch-finally3、try-with-resources4、多重捕获multi-catch5、throw与throws6、自定义异常和优势7、泛型背景与优势8、参数化类型与原生类型9、类型推断10、参数化类型与数组的差异11、类型通配符12、自定义泛型类和类型擦出13、泛型方法重载与重写集合1 、常用数据结构2 、Collection接口3 、List与Set接口4 、SortedSet与NavigableSet5 、相关接口的实现类6 、Comparable与Comparator7、Queue接口8 、Deque接口9 、Map接口10、NavigableMap11、相关接口的实现类12、流操作(聚合操作)13、Collections类的使用I/O流与反射1 、File类的使用2 、字节流3 、字符流4 、缓存流5 、转换流6 、数据流7、对象流8、类加载,链接与初始化9 、ClassLoader的使用10、Class类的使用11、通过反射调用构造器12、安全管理器网络编程模型与多线程1、进程与线程2、创建线程的方式3、线程的相关方法4、线程同步5、线程死锁6、线程协作操作7、计算机网络(IP与端口)8、TCP协议与UDP协议9、URL的相关方法10、访问网络资源11、TCP协议通讯12、UDP协议通讯13、广播SSM-Spring1.Spring/Spring MVC2.创建Spring MVC项目3.Spring MVC执行流程和参数SSM-Spring.IOC1.Spring/Spring MVC2.创建Spring MVC项目3.Spring MVC执行流程和参数SSM-Spring.AOP1.Spring/Spring MVC2.创建Spring MVC项目3.Spring MVC执行流程和参数SSM-Spring.Mybatis1.MyBatis简介2.MyBatis配置文件3.用MyBatis完成CRUD4.ResultMap的使用5.MyBatis关联查询6.动态SQL7.MyBatis缓冲8.MyBatis-GeneratorSocket编程1.网络通信和协议2.关于Socket3.Java Socket4.Socket类型5.Socket函数6.WebSocket7.WebSocket/Spring MVC/WebSocket AjaxIO/异步window对象全局作用域窗口关系及框架窗口位置和大小打开窗口间歇调用和超时调用(灵活运用)系统对话框location对象navigator对象screen对象history对象NIO/AIO1.网络编程模型2.BIO/NIO/AIO3.同步阻塞4.同步非阻塞5.异步阻塞6.异步非阻塞7.NIO与AIO基本操作8.高性能IO设计模式第三阶段 Java 主流框架MyBatis1.mybatis框架原理分析2.mybatis框架入门程序编写3.mybatis和hibernate的本质区别和应用场景4.mybatis开发方法5.SqlMapConfig配置文件讲解6.输入映射-pojo包装类型的定义与实现7.输出映射-resultType、resultMap8.动态sql9.订单商品数据模型分析10.高级映射的使用11.查询缓存之一级缓存、二级缓存12.mybatis与spring整合13. mybatis逆向工程自动生成代码Spring/Spring MVC1. springmvc架构介绍2. springmvc入门程序3. spring与mybatis整合4. springmvc注解开发—商品修改功能分析5. springmvc注解开发—RequestMapping注解6. springmvc注解开发—Controller方法返回值7. springmvc注解开发—springmvc参数绑定过程分析8. springmvc注解开发—springmvc参数绑定实例讲解9. springmvc与struts2的区别10. springmvc异常处理11. springmvc上传图片12. springmvc实现json交互13. springmvc对RESTful支持14. springmvc拦截器第四阶段 关系型数据库/MySQL/NoSQLSQL基础1.SQL及主流产品2.MySQL的下载与安装(sinux/windows)3.MySql的基本配置/配置文件4.基本的SQL操作 DDL5.基本的SQL操作 DML6.基本的SQL操作 DCL7.MySQL客户端工具8.MySQL帮助文档MySQL数据类型和运算符1 数值类型2 日期时间类型3 字符串类型4 CHAR 和 VARCHAR 类型5 BINARY 和 VARBINARY 类型6 ENUM 类型7 SET 类型8 算术运算符9 比较运算符10 逻辑运算符11 位运算12 运算符的优先级MySQL函数1 字符串函数2 数值函数3 日期和时间函数4 流程函数5 其他常用函数MySQL存储引擎1.MySQL支持的存储引擎及其特性2.MyISAM3.InnoDB4.选择合适的存储引擎选择合适的数据类型1 CHAR 与 VARCHAR2 TEXT 与 BLOB3 浮点数与定点数4 日期类型选择字符集1 字符集概述2 Unicode字符集3 汉字及一些常见字符集4 选择合适的字符集 5 MySQL 支持的字符集6 MySQL 字符集的设置 .索引的设计和使用1.什么是索引2.索引的类型3.索引的数据结构 BTree B+Tree Hash4.索引的存储5.MySQL索引6.查看索引的使用情况7.索引设计原则视图/存储过程/函数/触发器1. 什么是视图2. 视图操作3. 什么是存储过程4. 存储过程操作5. 什么是函数6. 函数的相关操作7. 触发器事务控制/锁1. 什么是事务2. 事务控制3. 分布式事务4. 锁/表锁/行锁5. InnoDB 行锁争用6. InnoDB 的行锁模式及加锁方法77 InnoDB 行锁实现方式78 间隙锁(Next-Key 锁)9 恢复和复制的需要,对 InnoDB 锁机制的影响10 InnoDB 在不同隔离级别下的一致性读及锁的差异11 表锁12 死锁SQL Mode和安全问题1. 关于SQL Mode2. MySQL中的SQL Mode3. SQL Mode和迁移4. SQL 注入5. 开发过程中如何避免SQL注入SQL优化1.通过 show status 命令了解各种 SQL 的执行频率2. 定位执行效率较低的 SQL 语句3. 通过 EXPLAIN 分析低效 SQL 的执行计划4. 确定问题并采取相应的优化措施5. 索引问题6.定期分析表和检查表7.定期优化表8.常用 SQL 的优化MySQL数据库对象优化1. 优化表的数据类型2 散列化3 逆规范化4 使用中间表提高统计查询速度5. 影响MySQL性能的重要参数6. 磁盘I/O对MySQL性能的影响7. 使用连接池8. 减少MySQL连接次数9. MySQL负载均衡MySQL集群MySQL管理和维护MemCacheRedis在Java项目中使用MemCache和Redis第五阶段:操作系统/Linux、云架构Linux安装与配置1、安装Linux至硬盘2、获取信息和搜索应用程序3、进阶:修复受损的Grub4、关于超级用户root5、依赖发行版本的系统管理工具6、关于硬件驱动程序7、进阶:配置Grub系统管理与目录管理1、Shell基本命令2、使用命令行补全和通配符3、find命令、locate命令4、查找特定程序:whereis5、Linux文件系统的架构6、移动、复制和删除7、文件和目录的权限8、文件类型与输入输出9、vmware介绍与安装使用10、网络管理、分区挂载用户与用户组管理1、软件包管理2、磁盘管理3、高级硬盘管理RAID和LVM4、进阶:备份你的工作和系统5、用户与用户组基础6、管理、查看、切换用户7、/etc/…文件8、进程管理9、linux VI编辑器,awk,cut,grep,sed,find,unique等Shell编程1、 SHELL变量2、传递参数3、数组与运算符4、SHELL的各类命令5、SHELL流程控制6、SHELL函数7、SHELL输入/输出重定向8、SHELL文件包含服务器配置1、系统引导2、管理守护进程3、通过xinetd启动SSH服务4、配置inetd5、Tomcat安装与配置6、MySql安装与配置7、部署项目到Linux第六阶段:Hadoop生态系统Hadoop基础1、大数据概论2、 Google与Hadoop模块3、Hadoop生态系统4、Hadoop常用项目介绍5、Hadoop环境安装配置6、Hadoop安装模式7、Hadoop配置文件HDFS分布式文件系统1、认识HDFS及其HDFS架构2、Hadoop的RPC机制3、HDFS的HA机制4、HDFS的Federation机制5、 Hadoop文件系统的访问6、JavaAPI接口与维护HDFS7、HDFS权限管理8、hadoop伪分布式Hadoop文件I/O详解1、Hadoop文件的数据结构2、 HDFS数据完整性3、文件序列化4、Hadoop的Writable类型5、Hadoop支持的压缩格式6、Hadoop中编码器和解码器7、 gzip、LZO和Snappy比较8、HDFS使用shell+Java APIMapRece工作原理1、MapRece函数式编程概念2、 MapRece框架结构3、MapRece运行原理4、Shuffle阶段和Sort阶段5、任务的执行与作业调度器6、自定义Hadoop调度器7、 异步编程模型8、YARN架构及其工作流程MapRece编程1、WordCount案例分析2、输入格式与输出格式3、压缩格式与MapRece优化4、辅助类与Streaming接口5、MapRece二次排序6、MapRece中的Join算法7、从MySQL读写数据8、Hadoop系统调优Hive数据仓库工具1、Hive工作原理、类型及特点2、Hive架构及其文件格式3、Hive操作及Hive复合类型4、Hive的JOIN详解5、Hive优化策略6、Hive内置操作符与函数7、Hive用户自定义函数接口8、Hive的权限控制Hive深入解读1 、安装部署Sqoop2、Sqoop数据迁移3、Sqoop使用案例4、深入了解数据库导入5、导出与事务6、导出与SequenceFile7、Azkaban执行工作流Sqoop与Oozie1 、安装部署Sqoop2、Sqoop数据迁移3、Sqoop使用案例4、深入了解数据库导入5、导出与事务6、导出与SequenceFile7、Azkaban执行工作流Zookeeper详解1、Zookeeper简介2、Zookeeper的下载和部署3、Zookeeper的配置与运行4、Zookeeper的本地模式实例5、Zookeeper的数据模型6、Zookeeper命令行操作范例7、storm在Zookeeper目录结构NoSQL、HBase1、HBase的特点2、HBase访问接口3、HBase存储结构与格式4、HBase设计5、关键算法和流程6、HBase安装7、HBase的SHELL操作8、HBase集群搭建第七阶段:Spark生态系统Spark1.什么是Spark2.Spark大数据处理框架3.Spark的特点与应用场景4.Spark SQL原理和实践5.Spark Streaming原理和实践6.GraphX SparkR入门7.Spark的监控和调优Spark部署和运行1.WordCount准备开发环境2.MapRece编程接口体系结构3.MapRece通信协议4.导入Hadoop的JAR文件5.MapRece代码的实现6.打包、部署和运行7.打包成JAR文件Spark程序开发1、启动Spark Shell2、加载text文件3、RDD操作及其应用4、RDD缓存5、构建Eclipse开发环境6、构建IntelliJ IDEA开发环境7、创建SparkContext对象8、编写编译并提交应用程序Spark编程模型1、RDD特征与依赖2、集合(数组)创建RDD3、存储创建RDD4、RDD转换 执行 控制操作5、广播变量6、累加器作业执行解析1、Spark组件2、RDD视图与DAG图3、基于Standalone模式的Spark架构4、基于YARN模式的Spark架构5、作业事件流和调度分析6、构建应用程序运行时环境7、应用程序转换成DAGSpark SQL与DataFrame1、Spark SQL架构特性2、DataFrame和RDD的区别3、创建操作DataFrame4、RDD转化为DataFrame5、加载保存操作与Hive表6、Parquet文件JSON数据集7、分布式的SQL Engine8、性能调优 数据类型深入Spark Streaming1、Spark Streaming工作原理2、DStream编程模型3、Input DStream4、DStream转换 状态 输出5、优化运行时间及内存使用6、文件输入源7、基于Receiver的输入源8、输出操作Spark MLlib与机器学习1、机器学习分类级算法2、Spark MLlib库3、MLlib数据类型4、MLlib的算法库与实例5、ML库主要概念6、算法库与实例GraphX与SparkR1、Spark GraphX架构2、GraphX编程与常用图算法3、GraphX应用场景4、SparkR的工作原理5、R语言与其他语言的通信6、SparkR的运行与应用7、R的DataFrame操作方法8、SparkR的DataFrameScala编程开发1、Scala语法基础2、idea工具安装3、maven工具配置4、条件结构、循环、高级for循环5、数组、映射、元组6、类、样例类、对象、伴生对象7、高阶函数与函数式编程Scala进阶1、 柯里化、闭包2、模式匹配、偏函数3、类型参数4、协变与逆变5、隐式转换、隐式参数、隐式值6、Actor机制7、高级项目案例Python编程1、Python编程介绍2、Python的基本语法3、Python开发环境搭建4、Pyhton开发Spark应用程序第八阶段:Storm生态系统storm简介与基本知识1、storm的诞生诞生与成长2、storm的优势与应用3、storm基本知识概念和配置4、序列化与容错机制5、可靠性机制—保证消息处理6、storm开发环境与生产环境7、storm拓扑的并行度8、storm命令行客户端Storm拓扑与组件详解1、流分组和拓扑运行2、拓扑的常见模式3、本地模式与stormsub的对比4、 使用非jvm语言操作storm5、hook、组件基本接口6、基本抽象类7、事务接口8、组件之间的相互关系spout详解 与bolt详解1、spout获取数据的方式2、常用的spout3、学习编写spout类4、bolt概述5、可靠的与不可靠的bolt6、复合流与复合anchoring7、 使用其他语言定义bolt8、学习编写bolt类storm安装与集群搭建1、storm集群安装步骤与准备2、本地模式storm配置命令3、配置hosts文件、安装jdk4、zookeeper集群的搭建5、部署节点6、storm集群的搭建7、zookeeper应用案例8、Hadoop高可用集群搭建Kafka1、Kafka介绍和安装2、整合Flume3、Kafka API4、Kafka底层实现原理5、Kafka的消息处理机制6、数据传输的事务定义7、Kafka的存储策略Flume1、Flume介绍和安装2、Flume Source讲解3、Flume Channel讲解4、Flume Sink讲解5、flume部署种类、流配置6、单一代理、多代理说明7、flume selector相关配置Redis1、Redis介绍和安装、配置2、Redis数据类型3、Redis键、字符串、哈希4、Redis列表与集合5、Redis事务和脚本6、Redis数据备份与恢复7、Redis的SHELL操作
『肆』 如何迅速学懂大数据专业
第一阶段:Java核心技术
本阶段主要学习的知识点包括:Java基本语法,面向对象,API,Eclipse开发工具的使用, 集合的底层原理,基本算法,jvm 参数,JDK8 的部分特性,IO、 线程、套接字、反射使用。
第二阶段:数据库关键技术阶段
本阶段主要学习的知识点包括:XML、HTML/CSS、JavaScript、Jquery、JDBC、Servlet、Tomcat/HTTPCookie/Session、JSP/EL表达式/JSTL标签 库、MVC设计模式/三层架构、JavaWeb高级开发技术、数据库高 级开发技术。
第三阶段:互联网核心框架
主要知识点:Spring、SpringMVC、MyBatis、SpringBoot、Maven、 Git工具。
适合岗位:初级Java开发工程师、Java后台开发工程师。
第四阶段:互联网流行技术
Redis&SpringBoot整合、RabbitMQ&SpringBoot整合、 Mycat&SpringBoot整合、solr原理讲解及使用、IDEA开发工具 的使用、ES&SpringBoot整合、Jsoup爬虫、SpringCloud微服 务整合。
适合岗位:中高级Java开发工程师、数据库开发工程师、 Java互联网开发工程师、Java微服务开发工程师、爬虫工程师。
第五阶段:大数据框架阶段
Hadoop/Hive、Hbase/Redis、Strom、Spark、Kafka、 SCALA、Zebra 项目、Linux云平台。
适合岗位:Spark大数据开发工程师、Hadoop大数据开发工 程师、Strom大数据开发工程师、Hive工程师、数据可视化工程 师、大数据平台运维工程师、数据仓库开发工程师、ETL开发工程师。
关于如何迅速学懂大数据专业,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
『伍』 大数据开发适合零基础吗
零基础学习java可按照这份大纲来进行学习第一阶段:Java专业基础课程阶段目标:1. 熟练掌握Java的开发环境与编程核心知识2. 熟练运用Java面向对象知识进行程序开发3. 对Java的核心对象和组件有深入理解4. 熟练应用JavaAPI相关知识5. 熟练应用JAVA多线程技术6. 能综合运用所学知识完成一个项目知识点:1、基本数据类型,运算符,数组,掌握基本数据类型转换,运算符,流程控制。2、数组,排序算法,Java常用API,类和对象,了解类与对象,熟悉常用API。3、面向对象特性,集合框架,熟悉面向对象三大特性,熟练使用集合框架。4、IO流,多线程。5、网络协议,线程运用。第二阶段:JavaWEB核心课程阶段目标:1. 熟练掌握数据库和MySQL核心技术2. 深入理解JDBC与DAO数据库操作3. 熟练运用JSP及Servlet技术完成网站后台开发4. 深入理解缓存,连接池,注解,反射,泛型等知识5. 能够运用所学知识完成自定义框架知识点:1、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,建模工具。2、深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为Java后台开发打下坚实基础。Web页面元素,布局,CSS样式,盒模型,JavaScript,jQuery。3、掌握前端开发技术,掌握jQuery。4、Servlet,EL表达式,会话跟踪技术,过滤器,FreeMarker。5、掌握Servlet相关技术,利用Servlet,JSP相关应用技术和DAO完成B/S架构下的应用开发。6、泛型,反射,注解。7、掌握JAVA高级应用,利用泛型,注解,枚举完成自己的CRUD框架开发为后续框架学习做铺垫。8、单点登录,支付功能,项目整合,分页封装熟练运用JSP及Servlet核心知识完成项目实战。第三阶段:JavaEE框架课程阶段目标:1. 熟练运用Linux操作系统常见命令及完成环境部署和Nginx服务器的配置2. 熟练运用JavaEE三大核心框架:Spring,SpringMVC,MyBatis3. 熟练运用Maven,并使用SpringBoot进行快速框架搭建4. 深入理解框架的实现原理,Java底层技术,企业级应用等5. 使用Shiro,Ztree和Spring,SpringMVC,Myts完成企业项目知识点:1、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境部署,Struts2概述,hiberante概述。2、Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。3、SSH的整合,MyBatis,SpringMVC,Maven的使用。4、了解AOP原理,了解中央控制器原理,掌握MyBatis框架,掌握SSM框架的整合。5、Shiro,Ztree,项目文档,项目规范,需求分析,原型图设计,数据库设计,工程构建,需求评审,配置管理,BUG修复,项目管理等。6、独立自主完成一个中小型的企业级综合项目的设计和整体架构的原型和建模。独立自主完成一个大型的企业级综合项目,并具备商业价值
『陆』 大数据培训课程好学吗
世界上没有来难学的知识源有没有难以教授的学生。这实际上是一个心态的问题,所谓世上无难事,只怕有心人。大数据方向很多:1、大数据开发;2、大数据分析;3、大数据可视化
目前大数据培训机构提供的课程大约有两种:一是大数据开发,二是数据分析与挖掘。以我的经验来看,大数据开发相对会比较难一点,在我这里的学生认为。大数据的知识点很多,技术体系复杂,需要很认真的学习。大数据培训一般指大数据开发,不需要数学和统计学基础的,大数据分析需要数学和统计学基础。
『柒』 学习java,进而向大数据方向,学习的路线应是怎么样的
Java Web趣点网实战教学来视频课程自课程目标:本课程防一个图片网站,应用到的技术有Servlet、Jsp、标签库、mysql、Jdbc、dbutil等,必须有Java SE基础才可以学习懂,把本课学完就可以系统地掌握B/S结构的软件如何开发,虽然做的是网站,其实网站的业务比软件更复杂一些!所以本课是学习Java Web的最佳实践 适合对象:如果你自学过Java或者在培训学习过Java,但又自己无法上手写程序,那么坚持学习完本课,你一会有所收益 学习条件:学习本课程必须有Java SE基础,熟悉http协议、熟练掌握Servlet、Jsp、xml、el等Java Web技术
『捌』 大数据培训到底是培训什么
大数据培训,目前主要有两种:
1、大数据开发
数据工程师建设和优化系统。学内习hadoop、spark、storm、超大集群容调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;
2、数据分析与挖掘
一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。
大数据培训一般是指大数据开发培训。
大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
『玖』 大数据培训课程安排有哪些,深圳大数据培训哪家好
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
大数据
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
『拾』 hive怎么处理大数据
Apache Hive数据仓库软件有助于使用SQL读取,写入和管理驻留在分布式存储中的大型数据集专。可以将结构投影到属已存储的数据上,提供命令行工具和JDBC驱动程序,用于将用户连接到Hive。最适用于传统的数据仓库任务。
Hive优势在于处理大数据,因为hive的执行延迟比较高。