⑴ 大数据和云计算,在汽车自动驾驶技术里的作用是什么
数据和云计算,在汽车自动驾驶技术里的作用是什么?可以基于路况、车辆性能、驾驶员操作习惯等因素,提供节能减排、降低驾驶疲劳的驾驶方案。自动驾驶借助汽车上的激光传感器和GPS,车辆通过相对先进的算法进行自我定位。
在道路上行驶是一个处理大量数据并做出决策的过程,而自动驾驶汽车则使用各种传感器来“观察”道路。这个过程也会产生大量的数据,平均1.5小时左右的驾驶时间会产生4TB的数据。在车辆方面,显然不适合处理和储存如此巨大的工作量。所以最好的办法就是使用云计算和云存储来支持自动驾驶汽车。
⑵ 如何运用交通大数据智慧出行
2015年两会上,“大数据(big data)”一词首次写入政府工作报告。在交通领域,大数据一直被视作缓解交通压力的技术利器。应用大数据有助于了解城市交通拥堵问题中人的出行规律和原因,实现交通和生活的和谐,提高城市的宜居性,为政府精准管理提供基于数据证据的综合决策。
随着手机网络、全球定位系统(global positioning system,GPS)/北斗车载导航、车联网、交通物联网的发展,交通要素的人、车、路等的信息都能够实时采集,城市交通大数据来源日益丰富。在日益成熟的物联网和云计算平台技术支持下,通过城市交通大数据的采集、传输、存储、挖掘和分析等,有望实现城市交通一体化,即在一个平台上实现交通行政监管、交通企业运营、交通市民服务的集成和优化。
⑶ 如何把大数据工具和原有数据仓库集成
大数据工具不应该破坏现有的数据仓库环境。虽然大量低成本,甚至零成本的工具降低了准入门槛,它们构成了Hadoop的生态系统,支持其存储和管理大量数据集的能力。很多原本居于商务智能和分析系统中心地位的企业数据仓库收到冲击。但是企业在数据仓库中投入了很多资金、资源和时间,建立并完善数据仓库的查询、报表和分析功能。企业不愿意这一切都付之东流。即便企业已经选择在Hadoop或NoSQL数据库上搭建新的商务智能和大数据分析架构,这也不是一朝一夕能够完成的。通常,这种转变还要以牺牲服务质量,甚至业务中断为代价。因此,大多数企业都会选择集成的方式,让新旧系统技术协同工作。比如把基于Hadoop的客户分析应用和现存客户数据仓库结合起来。来自于数据仓库的客户数据可以放到Hadoop应用程序里进行分析,分析结果在返回数据仓库。大数据关联集成的第一步是在数据仓库和大数据平台间设置关联。目前,大数据系统主要用于增强数据仓库的能力,其数据存储的成本要低于传统数据仓库。很多早期用户还会在数据仓库分析数据之前,采用Hadoop集群和NoSQL数据库存储数据。这些应用使用起来都很简单,就像用Hadoop分布式文件系统(HDFS)存储数据一样,也可以通过Hive,HBase,Cassandra和其他NoSQL技术建立更复杂的关联。将这些工具和数据仓库与商务智能框架结合起来需要关联性和说明。可以使用应用程序界面为数据仓库提供Hadoop和NoSQL系统的接口。另外,不少供应商都提供连接SQL数据库和大数据系统的封闭的连接器,包括基于集成标准的ODBC(开放数据库连接)和JDBC(Java数据库连接)。对于不能适用于传统关系模型的系统,可以用一个集成层将半结构化数据从原格式(比如YAML或JSON)转到可被商务智能应用读取的格式。如果要集成更加紧密,还有其他的方法。例如,数据仓库系统逐渐对MapRece功能开放,从而增强SQL语言,将Hadoop集群的分析处理和商务智能查询结果结合起来。更一个例子是将Hadoop分析结果和数据仓库结合起来,用来生成报表和分析。大数据阻力随着大数据的不断发展,对很多IT和数据仓库团队来说,集成不同的应用迫在眉睫。一种高度灵活的集成方案至关重要。脱节的体系结构。一种典型的方法是试点项目或验证概念,或测试早期产品应用,包括在自己孤立的环境中部署Hadoop或NoSQL系统。一个结构完整的集成方案必须把IT和数据架构与业务洞察力和设计结合起来,在混合型数据库、商务智能和分析架构中部署多种层。管理缺陷。大数据工具的开源本质往往会导致企业只重功能不重管理。随着商业话大数据软件的成熟,这种状况会得以缓解。但现在仍要重视管理能力的提升。技术短缺。扩大大数据集成面临的最大的挑战就在于使用Hadoop和NoSQL技术过程中产生的陡峭的学习曲线。毕竟在IT圈内,平行和分布式处理技术还很难懂,真正有开发和升级大数据应用经验的人就更少了。内部培训也许是速度最快、成本最低的方法。在把Hadoop和NoSQL与数据仓库环境集成的问题上,很多公司关心的不是可行性,而是时间。早作准备,可以对面临的阻碍有一个良好的把握。对于不同的集成需求,企业需要构建可重复的解决流程,这才是项目的最终目标。
⑷ 智能交通中有哪些问题可以用大数据来解决
随着时代的发展,人们已经不知不觉走进了信息化时代,在信息化时代大量的数据爆棚成了新时代的特征。在这种特征下人们依然追求生产生活质量的提高。对于发展智能交通使人们生活以及现实社会的需要,然而在智能交通的构建当中,大量的信息数据也给其增添了变化和难度,如何在大数据时代构建一个智能化、安全化、低成本、高效便捷化的智能交通系统成为了当今人们研究的课题。
就目前而言,国际上还没有给予“大数据”一个明确的具有权威性的定义,但是其在本质上的认识各个国家基本相同。一些研究人士认为“大数据”是数量极大的一堆数据,其作用性非常强,并且其可以对其应用领域的大体上做出预测。还有一些研究人士认为,在大量信息数据技术处理应用当中,“大数据”是一项大的数据集合,并且该种集合不仅数据量大并且还非常复杂。但是无论怎样大数据时代已经走来,我们必须接受并且要利用好其在各个领域的应用。因此在今天的智能交通领域,利用大数据技术已经成为了时代发展的必然,因为其可以给现代智能交通带来诸多大的变化。
随时网络信息技术以及相关配套技术的快速发展,使得当今时代在不知不觉中走进一个“大数据”时代阶段。大数据时代已经来临,对于城市交通来说既是机遇,也是挑战,如何应对,如何利用,这是一个很大的课题。在传统交通中,城市交通是中流砥柱,具有基础性的作用。大数据时代的特征人们用四个V字开头的英文单词来表达即速度(Velocity)、多样性(Variety)、体量(Volume)以及价值密度(Value)。在大数据时代,城市交通与大数据必然发生各种联系,通过大数据带来的技术突破推动城市交通迈向全面信息化时代,通过城市交通的快速发展推动大数据更加落地,产生实效城市交通大数据的集成和未来的挖掘应用对于现代轨道的发展具有重要作用。不论对哪一个传统行业来说,对大数据的需求,都要既懂技术又深谙内情。能够驾驭行业大数据的人,需要比金融更懂金融,比电信更懂电信,比交通更懂交通,需要充分调查乘客的实际需求,需要对高峰期充分了解。
⑸ 大数据集成的基本原理有哪些
大数据(big data),网络:指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理版的数据权集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的来源:人类社会的所有行为,比如交易、教育、出行、娱乐、吃住……
大数据包含的元素:文字、图片、视频、音频、生物信息、生产资料……
大数据的特点:数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。
大数据的价值:决策参考,比如用话画像、精准营销,产品升级,预测市场趋势等;自动学习,比如头条的精准推送,网络智能地图,谷歌智能机器人等。
大数据主要技术组件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
⑹ 请分析在交通大数据中可能遇到数据质量问题以及这些数据质量问题的检测方法和
摘要智慧交通中大数据应用面临的问题
⑺ 大数据在新能源汽车行业有哪些可以落地的应用
大数据技术在新能源汽车领域的应用主要体现在智能运营方面。
以智能充电为例,新能源汽车主要以电力能源作为汽车运行的动力,当汽车内部储存的电能消耗到一定程度时,必须充电才能确保纯电动汽车的正常使用。为了确保新能源汽车能够在短时间内完成充电工作,彻底解决以往纯电动汽车充电装置稀缺、充电难等问题,我国正在大力推动新能源汽车相关维护设施的建设工作,在城市区域和高速公路服务区等多个区域修建了大量的电动汽车充电站和充电桩。
作为新能源汽车使用过程中重要的基础设施,充电站和充电桩在为新能源汽车提供服务的过程中会产生海量的运行数据,如果不依托大数据技术对充电设施进行维护管理,新能源汽车在智能充电方面将会耗费大量的运维成本。简单来讲,新能源汽车领域依托大数据技术实现智能运营的主要方案就是打造车联网和充电网,并将二者与互联网相融合,形成一个为新能源汽车运营而服务的云平台。
该云平台首要具备的便是超强的数据处理能力,无论是并发数据还是海量数据均可快速有效地加以处理。其次,该云平台要具备强大的数据分析和挖掘能力,从海量数据中为新能源汽车运营挖掘高价值的数据信息。为了保证新能源汽车运营的效率和质量,需借助运营云平台对运营结构进行改革,整合运营数据,促使新能源汽车运营过程中涉及的全产业链互联互通。
在此基础上,车辆生产商和服务商可以通过大数据云平台获取新能源汽车的车辆信息,驾驶行为信息,电池数据和充电情况,并通过大数据技术建立车辆电池的全生命周期模型,为车辆用户提供更为精细化的管理与服务。
⑻ 大数据的集成的基本原理有哪些
大数据的集成的基本原理具体如下:
1、大数据集成应用,首先是从企业内部的小数据开始起步的。
2、首先搭建企业内部的大数据平台,可以用开源框架,可以用Ambari集成工具实践。
3、基于本企业的业务数据建立key指标,首先实现这些指标的准实时统计和可视化。
4、基于内外部的更多数据收集,建立企业需要的更高级的数据模型,从横向和纵向进行拓展和深挖,达到指导企业战术和战略的预测与指导作用。
简介
大数据(big data)指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的来源:人类社会的所有行为,比如交易、教育、出行、娱乐、吃住。
大数据包含的元素:文字、图片、视频、音频、生物信息、生产资料。
大数据的特点:数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。
大数据的价值:决策参考,比如用话画像、精准营销,产品升级,预测市场趋势等;自动学习,比如头条的精准推送,网络智能地图,谷歌智能机器人等。
⑼ 大数据正在改变汽车行业的5种方式
大数据正在改变汽车行业的5种方式大数据在十年前是一个有趣的概念,而现在却成为现代企业的一个普遍特征。数据从根本上讲是有价值的,这取决于所收集的内容以及如何使用,数据可以给企业带来更好的商业洞察力,帮助企业改变经营方向,并指导学习以及为什么企业的业务如此运作。当这些数据被大规模收集时,其收益会进一步增长。每个行业都在利用大数据的利益,而这些新的能力、理念和流程正以令人兴奋的全新方式重塑各个行业。汽车行业就是一个很好的例子,从理念到持续的客户服务,大数据正在从根本上改变汽车行业。汽车行业离不开大数据汽车行业的规模可能比人们想像的要大。有许多知名的汽车制造商,他们为大众设计和装配车辆,但人们还需要考虑他们依赖的广泛的供应商网络来制造和运送这些车辆所需的各个部件。也有经销商负责运输和销售这些车辆,另外,不要忘记安全和客户服务等部门。大数据的应用对汽车行业影响深远,因为几乎每个层面都将使用大数据。巨大的变化大数据将让汽车行业的多个不同层面提到改善:(1)价值分析。首先,大数据帮助企业了解汽车的真正价值。这在设计新车时非常有用,但在评估旧车时更加有用。Kelley BlueBook公司所提供的估值服务比以前更加精确和高效,像Clunker Junker公司这样的车辆回收商可以为车主提供更为精确的车款。(2)供应链管理。大数据最重要的应用之一是解析跨多个组织的特定流程的价值和流程;在汽车行业中,这一分析被应用于供应链管理。组织需要知道他们从哪里获得的零件,成本是多少,提供的效率如何,以及这些行为如何影响整个公司的整体盈利能力。复杂的数据处理功能可以洞察这些维度,而企业正在相应地优化其策略。(3)降低成本。汽车行业的大数据正在推动整体成本下降。大数据分析允许公司理解一种材料实质上有益于另一种材料,并帮助他们发现能提高效率或最大化生产率的新工艺变化。最终,这就意味着企业能够以更低廉的价格整合车辆,而消费者也看到了收益。消费者最终为车辆支付更少的费用,汽车制造商仍然能够获得最大的利润。(4)安全改进。企业也在使用大数据深入分析车辆安全。在从测试崩溃和模拟情景中收集数百万个数据点之后,企业可以对其车辆进行数百项额外的改进,以提高其能力,以在紧急事件和长期磨损的情况下生存下来。这又对企业和消费者都有利;消费者可以拥有更安全的汽车,企业的客户更快乐,保险成本更低。这也逐渐让交通更安全。(5)消费者的理解。最后,汽车制造商正在使用大数据来更好地了解客户的需求。这使得他们可以为大众设计更具吸引力,更实用的车辆(这可以使消费者更多地了解他们正在寻找的东西,并增加制造商的销售量)。它还为汽车制造商提供了重要的见解,然后他们可以用它来创建更具体的广告和营销活动,通过提高效率和最大限度地宣传其最重要品牌来节省资金。如果某人拥有一辆汽车或者计划在不久的将来购买一辆汽车,大数据已经使其受益。得益于大数据和预测分析,人们的车辆的价格将变得越来越便宜和安全,并可以根据个人需求量身定制。如果有机会完成客户调查,并为这些汽车厂商需要不断改进的大量数据做出贡献。
⑽ 大数据在智慧交通中起了哪些作用
大数据用于智能交通的积极意义 第一,大数据的虚拟性可以解决跨越行政区域的限制。交通大数据的虚拟性,有利于其信息跨越区域管理,只要多方共同遵照相关的信息共享原则,就能在已有的行政区域下解决跨域管理问题。第二,大数据具有信息集成优势和组合效率。大数据有助于建立综合性立体的交通信息体系,通过将不同范围、不同区域、不同领域的“数据仓库”加以综合,构建公共交通信息集成利用模式,发挥整体**通功能,这样才能发现新价值,带来新机会。例如气象、交通、保险部门的数据结合起来,可高效率地研究交通领域防灾减灾;IC卡数据结合抽样调查,能更快捷、更精确测得城市交通流分布状况。第三,大数据的智能性能较好的配置交通资源。通过对大数据的分析处理,可以辅助交通管理制定出较好的统筹与协调解决方案。一方面减少各个交通部门运营的人力和物力,另一方面可有些提升道理交通资源的合理利用。如根据大数据结果确定多模式地面公交网络高效配置和客流组织方案,多层次地面公交主干网络绿波通行控制以及交通信号自适应控制。 第四,大数据的快速性和可预测性能提升交通预测的水平。在对各个部门的数据进行准确提炼和构建合适的交通预测模型后,可以有效模拟交通未来运行状态,验证技术方案的可行性。而在实时交通预测领域,大数据的快速信息处理能力,对于车辆碰撞、车辆换道、驾驶员行为状态检测等实时预测也有非常高的可靠性。第五,提高交通运行效率。大数据技术能促进提高交通运营效率、道路网的通行能力、设施效率和调控交通需求分析。交通的改善所涉及工程量较大,而大数据的大体积特性有助于解决这种困境。大数据的实时性,使处于静态闲置的数据被处理和需要利用时,即可被智能化利用,使交通运行的更加合理。大数据技术具有较高预测能力,可降低误报和漏报的概率,随时针对交通的动态性给予实时监控。因此,在驾驶者无法预知交通的拥堵可能性时,大数据亦可帮助用户预先了解。第六,提高交通安全水平。主动安全和应急救援系统的广泛应用有效改善了交通安全状况,而大数据技术的实时性和可预测性则有助于提高交通安全系统的数据处理能力。在驾驶员自动检测方面,驾驶员疲劳视频检测、酒精检测器等车载装置将实时检测驾车者是否处于警觉状态,行为、身体与精神状态是否正常。同时,联合路边探测器检查车辆运行轨迹,大数据技术快速整合各个传感器数据,构建安全模型后综合分析车辆行驶安全性,从而可以有效降低交通事故的可能性。在应急救援方面,大数据以其快速的反应时间和综合的决策模型,为应急决策指挥提供辅助,提高应急救援能力,减少人员伤亡和财产损失。第七,提供环境监测方式。大数据技术在减轻道路交通堵塞、降低汽车运输对环境的影响等方面有重要的作用。通过建立区域交通排放的监测及预测模型,共享交通运行与环境数据,建立交通运行与环境数据共享试验系统,大数据技术可有效分析交通对环境的影响。同时,分析历史数据,大数据技术能提供降低交通延误和减少排放的交通信号智能化控制的决策依据,建立低排放交通信号控制原型系统与车辆排放环境影响仿真系统。