mongodb大数据查询优化|大数据平台(如Hadoop spark storm等)与NoSQL(如mongoDB Cassan

Ⅰ 为什么MongoDB适合大数据的存储

Mongo是一个高性能,开源,无模式的文档型数据库,它在许多场景下可用于替代传统的关系型数据库或键/值存储方式。Mongo使用C++开发,提供了以下功能:◆面向集合的存储:适合存储对象及jsON形式的数据。◆动态查询:Mongo支持丰富的查询表达式。查询指令使用JSON形式的标记,可轻易查询文档中内嵌的对象及数组。◆完整的索引支持:包括文档内嵌对象及数组。Mongo的查询优化器会分析查询表达式,并生成一个高效的查询计划。◆查询监视:Mongo包含一个监视工具用于分析数据库操作的性能。◆复制及自动故障转移:Mongo数据库支持服务器之间的数据复制,支持主-从模式及服务器之间的相互复制。复制的主要目标是提供冗余及自动故障转移。◆高效的传统存储方式:支持二进制数据及大型对象(如照片或图片)。◆自动分片以支持云级别的伸缩性(处于早期alpha阶段):自动分片功能支持水平的数据库集群,可动态添加额外的机器。MongoDB的主要目标是在键/值存储方式(提供了高性能和高度伸缩性)以及传统的RDBMS系统(丰富的功能)架起一座桥梁,集两者的优势于一身。根据官方网站的描述,Mongo适合用于以下场景:◆网站数据:Mongo非常适合实时的插入,更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。◆缓存:由于性能很高,Mongo也适合作为信息基础设施的缓存层。在系统重启之后,由Mongo搭建的持久化缓存层可以避免下层的数据源过载。◆大尺寸,低价值的数据:使用传统的关系型数据库存储一些数据时可能会比较昂贵,在此之前,很多时候程序员往往会选择传统的文件进行存储。◆高伸缩性的场景:Mongo非常适合由数十或数百台服务器组成的数据库。Mongo的路线图中已经包含对MapRece引擎的内置支持。◆用于对象及JSON数据的存储:Mongo的BSON数据格式非常适合文档化格式的存储及查询。自然,MongoDB的使用也会有一些限制,例如它不适合:◆高度事务性的系统:例如银行或会计系统。传统的关系型数据库目前还是更适用于需要大量原子性复杂事务的应用程序。◆传统的商业智能应用:针对特定问题的BI数据库会对产生高度优化的查询方式。对于此类应用,数据仓库可能是更合适的选择。◆需要SQL的问题MongoDB支持OS X、Linux及Windows等操作系统,并提供了Python,PHP,Ruby,Java及C++语言的驱动程序,社区中也提供了对Erlang及.NET等平台的驱动程序。

Ⅱ mongodb一次写入大数据,怎么搞,分页插吧,每次到第二页就变的好慢,几秒一条数据的插入

在MongoDB中,文档是对数据的抽象,它被使用在Client端和Server端的交互中。所有的Client端(各种语言专的Driver)都会使用这种属抽象,它的表现形式就是我们常说的BSON(Binary JSON )。BSON是一个轻量级的二进制数据格式。MongoDB能够使用BSON,并将BSON作为数据的存储存放在磁盘中。当Client端要将写入文档,使用查询等等操作时,需要将文档编码为BSON格式,然后再发送给Server端。同样,Server端的返回结果也是编码为BSON格式再放回给Client端的。

Ⅲ mongodb数据库count速度慢怎么解决

因为mongodb使用memory-mapped file,所以mongodb运行时os会不停的把mongodb需要的数据库文件的部分内容读入物理内存里,所以:如果没有合适的index,query的时候os需要把整个mongodb需要的文档全部读进物理内存,数据的大小超过物理内存的时候就会变慢。query不同的db的时候,如果上一个query正好是同一个db,那么需要的那部分内容都已经在物理内存里了,就会很快;如果上一个query是一个大数据库,当前的query是另一个大数据库,os会需要腾出物理内存,然后把这次query需要的内容读进物理内存,这样就会变慢。如果你的硬盘读写速度本身就很慢,那mongodb自然也会很慢。

Ⅳ SQLserver2005 和 mongodb的大数据量的处理

你们老抄板也是没事忽悠你啊! 你上当了 现在不是四月!——————————–MongoDB 是nosql 的一种存储数据库. 也就是说 所有业务都要转化.而且这种分布式并没有带来什么好处.况且即使是银行,数据量是你的万亿倍,也没听说用mongodb啊!————————-这个问题其实很简单,将记录表 按时间分区 即可.你可以网络一下 sql2005 表分区 然后你将磁盘进行镜像分区 做 分布式存储 这不比你改存储方式强啊!学过高中数学 划分 分界点 应该很容易.

Ⅳ 大数据平台(如Hadoop spark storm等)与NoSQL(如mongoDB Cassan

Hadoop家族中的hbase就是nosql

Ⅵ mongodb和mysql5.7的json哪个更好,优缺点比较

与关系型数据库相比,MongoDB的优点:①弱一致性(最终一致),更能保证用户的访问速度:举例来说,在传统的关系型数据库中,一个COUNT类型的操作会锁定数据集,这样可以保证得到“当前”情况下的精确值。这在某些情况下,例 如通过ATM查看账户信息的时候很重要,但对于Wordnik来说,数据是不断更新和增长的,这种“精确”的保证几乎没有任何意义,反而会产生很大的延 迟。他们需要的是一个“大约”的数字以及更快的处理速度。但某些情况下MongoDB会锁住数据库。如果此时正有数百个请求,则它们会堆积起来,造成许多问题。我们使用了下面的优化方式来避免锁定:每次更新前,我们会先查询记录。查询操作会将对象放入内存,于是更新则会尽可能的迅速。在主/从部署方案中,从节点可以使用“-pretouch”参数运行,这也可以得到相同的效果。 使用多个mongod进程。我们根据访问模式将数据库拆分成多个进程。 ②文档结构的存储方式,能够更便捷的获取数据。对于一个层级式的数据结构来说,如果要将这样的数据使用扁平式的,表状的结构来保存数据,这无论是在查询还是获取数据时都十分困难。举例1:就拿一个“字典项”来说,虽然并不十分复杂,但还是会关系到“定义”、“词性”、“发音”或是“引用”等内容。大部分工程师会将这种模型使用关系型数据库 中的主键和外键表现出来,但把它看作一个“文档”而不是“一系列有关系的表”岂不更好?使用 “dictionary.definition.partOfSpeech='noun'”来查询也比表之间一系列复杂(往往代价也很高)的连接查询方便 且快速。举例2:在一个关系型数据库中,一篇博客(包含文章内容、评论、评论的投票)会被打散在多张数据表中。在MongoDB中,能用一个文档来表示一篇博客, 评论与投票作为文档数组,放在正文主文档中。这样数据更易于管理,消除了传统关系型数据库中影响性能和水平扩展性的“JOIN”操作。CODE↓> db.blogposts.save({ title : "My First Post", author: {name : "Jane", id :1}, comments : [{ by: "Abe", text: "First" }, { by : "Ada", text : "Good post" }]})> db.blogposts.find( { "author.name" : "Jane" } )> db.blogposts.findOne({ title : "My First Post", "author.name": "Jane", comments : [{ by: "Abe", text: "First" }, { by : "Ada", text : "Good post" } ]})> db.blogposts.find( { "comments.by" : "Ada" } )> db.blogposts.ensureIndex( { "comments.by" : 1 } );举例③:MongoDB是一个面向文档的数据库,目前由10gen开发并维护,它的功能丰富,齐全,完全可以替代MySQL。在使用MongoDB做产品原型的过程中,我们总结了MonogDB的一些亮点:使用JSON风格语法,易于掌握和理解:MongoDB使用JSON的变种BSON作为内部存储的格式和语法。针对MongoDB的操作都使用JSON风格语法,客户端提交或接收的数据都使用JSON形式来展现。相对于SQL来说,更加直观,容易理解和掌握。Schema-less,支持嵌入子文档:MongoDB是一个Schema-free的文档数据库。一个数据库可以有多个Collection,每 个Collection是Documents的集合。Collection和Document和传统数据库的Table和Row并不对等。无需事先定义 Collection,随时可以创建。Collection中可以包含具有不同schema的文档记录。 这意味着,你上一条记录中的文档有3个属性,而下一条记录的文档可以有10个属 性,属性的类型既可以是基本的数据类型(如数字、字符串、日期等),也可以是数组或者散列,甚至还可以是一个子文档(embed document)。这 样,可以实现逆规范化(denormalizing)的数据模型,提高查询的速度。③内置GridFS,支持大容量的存储。 GridFS是一个出色的分布式文件系统,可以支持海量的数据存储。 内置了GridFS了MongoDB,能够满足对大数据集的快速范围查询。④内置Sharding。提供基于Range的Auto Sharding机制:一个collection可按照记录的范围,分成若干个段,切分到不同的Shard上。Shards可以和复制结合,配合Replica sets能够实现Sharding+fail-over,不同的Shard之间可以负载均衡。查询是对 客户端是透明的。客户端执行查询,统计,MapRece等操作,这些会被MongoDB自动路由到后端的数据节点。这让我们关注于自己的业务,适当的 时候可以无痛的升级。MongoDB的Sharding设计能力最大可支持约20 petabytes,足以支撑一般应用。这可以保证MongoDB运行在便宜的PC服务器集群上。PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。⑤第三方支持丰富。(这是与其他的NoSQL相比,MongoDB也具有的优势)现在网络上的很多NoSQL开源数据库完全属于社区型的,没有官方支持,给使用者带来了很大的风险。而开源文档数据库MongoDB背后有商业公司10gen为其提供供商业培训和支持。而且MongoDB社区非常活跃,很多开发框架都迅速提供了对MongDB的支持。不少知名大公司和网站也在生产环境中使用MongoDB,越来越多的创新型企业转而使用MongoDB作为和Django,RoR来搭配的技术方案。⑥性能优越:在使用场合下,千万级别的文档对象,近10G的数据,对有索引的ID的查询不会比mysql慢,而对非索引字段的查询,则是全面胜出。 mysql实际无法胜任大数据量下任意字段的查询,而mongodb的查询性能实在让我惊讶。写入性能同样很令人满意,同样写入百万级别的数 据,mongodb比我以前试用过的couchdb要快得多,基本10分钟以下可以解决。补上一句,观察过程中mongodb都远算不上是CPU杀手。与关系型数据库相比,MongoDB的缺点:①mongodb不支持事务操作。 所以事务要求严格的系统(如果银行系统)肯定不能用它。(这点和优点①是对应的)②mongodb占用空间过大。 关于其原因,在官方的FAQ中,提到有如下几个方面:1、空间的预分配:为避免形成过多的硬盘碎片,mongodb每次空间不足时都会申请生成一大块的硬盘空间,而且申请的量从64M、128M、256M那 样的指数递增,直到2G为单个文件的最大体积。随着数据量的增加,你可以在其数据目录里看到这些整块生成容量不断递增的文件。2、字段名所占用的空间:为了保持每个记录内的结构信息用于查询,mongodb需要把每个字段的key-value都以BSON的形式存储,如果 value域相对于key域并不大,比如存放数值型的数据,则数据的overhead是最大的。一种减少空间占用的方法是把字段名尽量取短一些,这样占用 空间就小了,但这就要求在易读性与空间占用上作为权衡了。我曾建议作者把字段名作个index,每个字段名用一个字节表示,这样就不用担心字段名取多长 了。但作者的担忧也不无道理,这种索引方式需要每次查询得到结果后把索引值跟原值作一个替换,再发送到客户端,这个替换也是挺耗费时间的。现在的实现算是 拿空间来换取时间吧。3、删除记录不释放空间:这很容易理解,为避免记录删除后的数据的大规模挪动,原记录空间不删除,只标记“已删除”即可,以后还可以重复利用。

Ⅶ 对于 Web 2.0 实时应用、大数据量,MongoDB 和 memcached + SQL 哪个性能更好、在国内比较容易雇工程师

Mongodb,分布式文档存储数据库,由C++语言编写,旨在为WEB应用提供可扩展的高性能数据存储解决方案。MongoDB是一个高性能,开源,无模式的文档型数据库,是当前NoSql数据库中比较热门的一种。它在许多场景下可用于替代传统的关系型数据库或键/值存储方式。Mongo使用C++开发。

7)使用高效的二进制数据存储,包括大型对象(如视频等)。

8)自动处理碎片,以支持云计算层次的扩展性。

9)支持RUBY,PYTHON,JAVA,C++,PHP,C#等多种语言。

10)文件存储格式为BSON(一种JSON的扩展)。

11)可通过网络访问。

Ⅷ 如何在Mongodb集合中统计去重之后的数据

比方说我们有个Mongodb集合,

然后使用db.callerstatis.count()就可以知道有多少不同的手机号码了。

使用这种方式,我们同样在大数据量的集合上试了一下,可惜还是失败了!!!!(桑心T_T),如果有谁有好的方法,麻烦也告诉我一下,小的感激不尽啊^_^

如果您对我的技术专栏文章感兴趣并支持我继续深入的写下去,您可以扫码支持我,毕竟英雄惜英雄嘛,不管多少我都真心的感谢您,毕竟都是对我劳动成果的认可,谢谢(^_^)。。。

Ⅸ mongo集群可以用来进行海量数据分析吗

今已进入大数据时代,特别是大规模互联网web2.0应用不断发展及云计算所需要的海量存储和海量计算发展,传统的关系型数据库已无法满足这方面的需求。随着NoSQL数据库的不断发展和成熟,可以较好地解决海量存储和海量计算方面的应用需求。本文重点描述作为NoSQL之一MongoDB数据库在海量数据存储方面的应用。

由于MongoDB中的Bson对象大小是有限制的,在1.7版本以前单个Bson对象最大容量为4M,1.7版本以后单个Bson对象最大容量为16M[5]。对于一般的文件存储,单个对象的4到16M的存储容量能够满足需求,但无法满足对于一些大文件的存储,如高清图片、设计图纸、视频等,因此在海量数据存储方面,MongoDB提供了内置的Grid

基于GridFS的海量数据存储测试本文主要采用MongoDB最新版2.0及官方提供的C#语言驱动进行测试。

Ⅹ c# 驱动 查询 MongoDB group 大数据量,导致MongoDB服务关闭

32bit的mongodb只能有2gb的容量。

赞(0)